Preparation of carbocyclic, phosphonate analogues of cyclic adenosine monophosphate (cAMP)

Jennifer M. L. Hillman ${ }^{a}$ and Stanley M. Roberts ${ }^{b}$

${ }^{a}$ Department of Chemistry, Exeter University, Exeter, UK EX4 4QD
${ }^{b}$ Robert Robinson Laboratories, Department of Chemistry, University of Liverpool, PO Box 147, Liverpool, UK L69 3BX

Abstract

Compounds 2 and 5 have been synthesised and cyclised to form the cyclic $3^{\prime}, 5^{\prime}$-adenosine monophosphate (cAMP) analogues 3,6 and 7. In a complementary exercise, cyclopentadiene has been converted into the phosphonic acid 16 in six steps. Compound 16 has been deprotected and cyclised to form the cyclic $3^{\prime}, 5^{\prime}$-adenosine monophosphate (cAMP) analogues 18 and 19.

Introduction

Cyclic adenosine monophosphate (cAMP) is the second messenger of a variety of hormones, and numerous derivatives and analogues of cAMP have been synthesised ${ }^{1}$ in order to elucidate their molecular interactions with receptor sites, ${ }^{2-4}$ as potential agonists or antagonists of cAMP, ${ }^{2,4,5}$ to control metabolism, ${ }^{6}$ as inhibitors of the proliferation of metastasising tumour cells (i.e. anti-cancer treatments), ${ }^{7}$ as cardiotonic agents ${ }^{8}$ or as prodrugs of antiviral or antitumour nucleosides or nucleotides. ${ }^{9}$ During our recent studies we have found a simple strategy for the preparation of a new family of cAMP mimetics.

Results and discussion

The carbocyclic nucleotide $\mathbf{1}$ was synthesised according to a previously published procedure ${ }^{10}$ and hydrolysed to yield the monoacid 2 with concomitant replacement of the labile chlorine atom. The monoacid 2 was cyclised in good yield using benzotriazol-1-yloxy(tripyrrolidino)phosphonium hexafluorophosphate (PyBOP) ${ }^{11}$ to give only the $3^{\prime}, 4^{\prime}$-cyclic phosphonates 3 (Scheme 1) with a diastereomeric ratio of $\sim 3: 1$ (vide infra). The diastereomers were separated by flash column chromatography.

Scheme 1 Reagents and conditions: (i) $\mathrm{NaOH}, \mathrm{EtOH}$, room temp. 24 h (89\%); (ii) PyBOP, DIEA, DMF, room temp., 24 h (80%)

It was not possible to make the deoxy cAMP analogue 6 from the 6-ethoxy compound 3 using liquid ammonia, hence an alternative route was adopted. Conversion of compound $\mathbf{1}$ into compound 4 was readily achieved as shown in Scheme 2, whereupon reaction with sodium hydroxide in ethanol furnished compound $\mathbf{5}$, which was converted into the cyclic compound 6 ($\sim 3: 1$ inseparable mixture of diastereomers).

Scheme 2 Reagents and conditions: (i) $\mathrm{NH}_{3(1)}$, room temp., $24 \mathrm{~h}(83 \%)$; (ii) $\mathrm{NaOH}, \mathrm{EtOH}$, room temp., 24 h (95%); (iii) PyBOP, DIEA, DMF, room temp., 24 h (70\%); (iv) TMSBr, DMF, room temp., 72 h (90%)

Trimethylsilyl bromide (TMSBr) cleaved an alkoxy group ${ }^{12}$ to afford exclusively the desired product 7 , with no opening of the P -containing ring (Scheme 2). The synthesis of a related cAMP analogue possessing a 2^{\prime}-hydroxy group was then undertaken (Scheme 3). Compound $\mathbf{8}$ was prepared using a previously developed strategy. ${ }^{13}$ Dihydroxylation of the alkene 8 gave a polar, unstable triol (not shown). However, protection of the alcohol $\mathbf{8}$ with a tert-butyldimethylsilyl (TBDMS) group gave compound 9 , which underwent dihydroxylation in high yield, after a short reaction time and a simple work-up procedure. The diol $\mathbf{1 0}$ was protected as the acetonide 11. Removal of the TBDMS group by using ammonium fluoride in methanol ${ }^{14}$ gave the alcohol 12 [Nuclear Overhauser enhancement (NOE) experiments were carried out on the acetonides 11 and 12 to confirm that the dihydroxylation had occurred on the lower (α) face]. Conversion of the diol $\mathbf{1 0}$ into the acetonide $\mathbf{1 1}$ proceeded with a disappointing yield. On further investigation it was found that some of the diol $\mathbf{1 0}$ had been converted

Scheme 3 Reagents and conditions: (i) TBDMSCl, imidazole, room temp., 1 h , DMF (97%); (ii) $\mathrm{OsO}_{4}, \mathrm{~K}_{3} \mathrm{Fe}(\mathrm{CN})_{6}, \mathrm{~K}_{2} \mathrm{CO}_{3}, \mathrm{Bu}^{t} \mathrm{OH}$-water, room temp., 24 h (85%); (iii) 2,2-DMP, PTSA (cat.), DMF, room temp., 48 h (61\%); (iv) $\mathrm{NH}_{4} \mathrm{~F}, \mathrm{MeOH}, 6{ }^{\circ} \mathrm{C}, 3 \mathrm{~h}(100 \%)$; (v) 2,2-DMP, PTSA (1 mol equiv.), DMF, room temp., $48 \mathrm{~h}(97 \%)$
directly into the acetonide $\mathbf{1 2}$, i.e. the toluene- p-sulfonic acid (PTSA) had catalysed both protection as the acetonide and removal of the TBDMS group. This was not immediately apparent as compounds $\mathbf{1 0}$ and $\mathbf{1 2}$ co-elute under the TLC conditions used. When one mol equivalent of PTSA was used, it was possible to convert the diol $\mathbf{1 0}$ into the acetonide $\mathbf{1 2}$ in almost quantitative yield (Scheme 3).

Attempts were made to introduce the phosphonate moiety into compounds $\mathbf{1 2}$ and $\mathbf{8}$ by using sodium hydride and diethyl p-tolylsulfonyloxymethanephosphonate [prepared from diethyl (hydroxymethane)phosphonate ${ }^{15}$]; diethyl phosphonomethyltriflate [prepared from diethyl (hydroxymethane)phosphonate ${ }^{16}$] and butyllithium or 4-(dimethylamino)pyridine (DMAP) and pyridine, but no product was isolated from any of these reactions. The problem was probably due to the labile chlorine atom on the purine ring (as this reaction works successfully on nucleoside analogues without a 6 -chloropurine base) ${ }^{15}$ and hence the chlorine atom of compound 12 was replaced with a methoxy group to give the ether $\mathbf{1 3}$ by refluxing compound $\mathbf{1 2}$ in methanol in the presence of potassium carbonate. The phosphonate moiety was then introduced into the alcohol 13 by using sodium hydride and the phosphonate monoester $(\mathrm{EtO})(\mathrm{HO})(\mathrm{P}=\mathrm{O}) \mathrm{CH}_{2} \mathrm{OTs}$. This monoester ${ }^{17}$ was used as it has been shown to give a cleaner reaction than the diester $(\mathrm{EtO})_{2}(\mathrm{P}=\mathrm{O}) \mathrm{CH}_{2} \mathrm{OTs}$ due to the lability of one of the ethoxy groups. However, the yield of the product $\mathbf{1 4}$ was only 25%. A small amount of the ethoxy compound 16 was also isolated from the reaction, indicating that, under these conditions, the methoxy group on the purine base is labile. By using the ethoxy compound $\mathbf{1 5}$ (prepared by refluxing chloride $\mathbf{1 2}$ with $\mathrm{K}_{2} \mathrm{CO}_{3}$ in EtOH) the yield of the product $\mathbf{1 6}$ was increased to 75% (Scheme 4).

Several methods were tried to remove the acetonide unit from compound 16. Iodine in methanol ${ }^{18}$ gave a complex mixture of products, while aq. acetic acid was ineffective. Dowex $50-\mathrm{W}$ gave a low and variable yield (35-61\%) while HCl tetrahydrofuran (THF) (1:1) gave a satisfactory conversion,

Scheme 4 Reagents and conditions: (i) $\mathrm{MeOH}, \mathrm{K}_{2} \mathrm{CO}_{3}$, reflux, 2 h (91%); (ii) $\mathrm{NaH}(95 \%$, dry), (EtO)(HO)($\mathrm{P}=\mathrm{O}) \mathrm{CH}_{2} \mathrm{OTs}$, THF, DMF, room temp., $24 \mathrm{~h}(25 \%)$; (iii) $\mathrm{EtOH}, \mathrm{K}_{2} \mathrm{CO}_{3}$, reflux, 2 h (91%); (iv) NaH $(95 \%$, dry $),(\mathrm{EtO})(\mathrm{HO})(\mathrm{P}=\mathrm{O}) \mathrm{CH}_{2} \mathrm{OTs}$, THF, DMF, room temp., 24 h (75\%)
providing compound $\mathbf{1 7}$ in 81% yield. The diol $\mathbf{1 7}$ was cyclised by using PyBOP to give compound 18 as a separable mixture of diastereomers ($\sim 3: 1$) (Scheme 5).

Scheme 5 Reagents and conditions: (i) HCl (2m)-THF (1:1), room temp., 24 h (81\%); (ii) PyBOP, DIEA, DMF, room temp., 24 h (76%); (iii) $\mathrm{NaOH}, \mathrm{EtOH}$, room temp., 1 h ; (iv) TMSBr, DMF, room temp., 48 h (87%)

Alkaline hydrolysis ($\mathrm{NaOH}-\mathrm{EtOH}$) of compound $\mathbf{1 8}$ gave exclusively the ring-opened product $\mathbf{1 7}$. The ethoxy group on the phosphorus could, however, be removed by treatment of compound $\mathbf{1 8}$ with TMSBr ${ }^{12}$ without any ring opening occurring, to give the cyclic inosine product 19. Note also that modification of the purine ethoxy group occurred concomitantly.
The monoesters 2, $\mathbf{5}$ and $\mathbf{1 7}$ were converted into the cyclic AMP analogues 3, 6 and 18, respectively, with diastereomeric ratios all $\sim 3: 1$. While spectroscopic data do not allow identification of the major diastereomer to be made, for mechanistic reasons we tentatively predict that the major product will have the S configuration at the phosphorus centre. Thus, after activation by PyBOP to give a good leaving group (LG) on phosphorus, structure 20 (Scheme 6), a favourable hydrogen-bonded conformation for the diastereomer 20 allows the ready formation of the pentacoordinate trigonal bipyramidal intermediate 21, leading to production of the diastereomer 22. The other diastereomer of the activated phosphonate, compound 23, undergoes pseudorotation ($\mathbf{2 4} \boldsymbol{\mathbf { 2 5 } \text {) (Scheme 7) in order }}$ to form the same product $\mathbf{2 2}$ as the major component of the isolated material.

Although this work was carried out on racemic mixtures, compounds $\mathbf{1}^{10}$ and $\mathbf{8}^{13}$ can be made as single enantiomers [enantiomeric excess (ee) $\geqslant 95 \%$], thus enabling all the cAMP

Scheme 6

23

Scheme 7
analogues described in this paper to be made, if required, in optically active form.

Experimental

Analytical-grade solvents were used for flash column chromatography; light petroleum refers to the fraction distilling between 40 and $60^{\circ} \mathrm{C}$. Anhydrous diethyl ether and THF were obtained by distillation from sodium benzophenone ketyl. Anhydrous dichloromethane was obtained by distillation from calcium hydride. Anhydrous dimethylformamide (DMF) was obtained direct from Aldrich. All other solvents employed in reactions were 'Spectrograde' and were used as received. All reagents were used as obtained from commercial sources unless otherwise stated.
TLC was performed on Merck Kieselgel $60 \mathrm{~F}_{254} 0.25 \mathrm{~mm}$ glass-backed plates. The plates were visualised using alkaline potassium permanganate and/or by irradiation under a lowfrequency UV lamp. Flash column chromatography was performed using Merck Kieselgel 60, 230-400 mesh.

Mps were measured using an 'Electrothermal' capillary melting point apparatus and are uncorrected.
Optical rotations were measured on an Optical Activity Ltd. AA-1000 polarimeter. $[a]_{\mathrm{D}}$-Values are given in $10^{-1} \mathrm{deg} \mathrm{cm}^{2} \mathrm{~g}^{-1}$. IR spectra were recorded as thin films, CHCl_{3} solutions or KBr
discs on a Perkin-Elmer 881 grating spectrometer. Absorption maxima were recorded in reciprocal centimetres (cm^{-1}). The following abbreviations are used: s , strong; ms, medium strong; m, medium; mw, medium weak; w, weak; br, broad; str., stretch; def., deformation; sym. def., symmetric deformation; sat., saturated; unsat., unsaturated; sub., substituted; conj., conjugated. UV absorptions were recorded using 1 cm solution cells on a Phillips PU 8720 UV-visible scanning spectrophotometer. Absorption maxima are recorded in nanometres (nm). ${ }^{1} \mathrm{H}$ NMR spectra were recorded on Bruker AM250 (250 MHz), AM300 (300 MHz) or AM400 (400 MHz) spectrometers. Chemical shifts $\left(\delta_{\mathrm{H}}\right)$ are reported in parts per million (ppm) downfield from tetramethylsilane. Coupling constants (J) are reported in hertz (Hz). The following abbreviations are used: s, singlet; d, doublet; t, triplet; q, quartet; quin, quintet; m, multiplet; br, broad; and combinations of these. ${ }^{13} \mathrm{C}$ NMR spectra were recorded on Bruker AM250 (62.9 MHz), AM300 (75.5 $\mathrm{MHz})$ or AM400 $(100.6 \mathrm{MHz})$ spectrometers. Chemical shifts $\left(\delta_{\mathrm{C}}\right)$ are reported in parts per million (ppm) downfield from tetramethylsilane. ${ }^{31}$ P NMR spectra were recorded on a Bruker AM400 (162.0 MHz) spectrometer. Mass spectra were run on a Kratos Profile HV-3 high-resolution instrument.

Enantiomeric excesses (ees) were determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy using tris-\{3-[heptafluoropropyl(hydroxy)methyl-ene]-(+)-camphorato\}europium(III).
3,4-Epoxycyclopentan-1-ol was obtained from Cookson Chemicals Ltd.

6-Ethoxy-9-\{(1' $\left.\beta, 3^{\prime} \boldsymbol{\alpha}, 4^{\prime} \boldsymbol{\beta}\right)-4^{\prime}$-[ethoxy(hydroxy)phosphoryl-methoxy]-3'-hydroxycyclopentyl\}purine 2

Sodium hydroxide ($2 \mathrm{~m} ; 0.8 \mathrm{~cm}^{3}$) was added to a solution of the diester $1(71 \mathrm{mg}, 0.176 \mathrm{mmol})$ in $\mathrm{EtOH}\left(1 \mathrm{~cm}^{3}\right)$. The reaction mixture was stirred overnight, and then neutralised to pH 7 with 1 m hydrochloric acid. The solvents were removed in vacuo and the resultant oil was purified by chromatography using a reversed-phase C-18 column, eluting with water- $\mathrm{CH}_{3} \mathrm{CN}$ ($95: 5$). The title compound 2 was isolated as a glass (60 mg , 88%); $v_{\text {max }}($ film $) 3354 \mathrm{br}, \mathrm{m}(\mathrm{O}-\mathrm{H}$ str.), 2984 m (C-H str.), 1600 s (conj. cyclic $\mathrm{C}=\mathrm{N}$), 1580 m (conj. cyclic $\mathrm{C}=\mathrm{N}$), 1460 m ($\mathrm{C}-\mathrm{H}$ def.), $1340 \mathrm{~m}(\mathrm{O}-\mathrm{H}$ bend $), 1319 \mathrm{~m}(\mathrm{P}=\mathrm{O})$ and $1056 \mathrm{~s}(\mathrm{C}-\mathrm{O}$ str. and $\mathrm{P}-\mathrm{O}-\mathrm{alkyl}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{OD}\right) 1.31(3 \mathrm{H}, \mathrm{t}, J 7$, $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OP}$), 1.48 ($3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OAr}$), $2.14(1 \mathrm{H}, \mathrm{m}$, $\left.5^{\prime}-\mathrm{H}^{\mathrm{\beta}}\right), 2.39\left(2 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}\right), 2.79(1 \mathrm{H}$, ddd, $J 15,9$ and 5.5 , $5^{\prime}-\mathrm{H}^{\mathrm{u}}$), 3.88 ($2 \mathrm{H}, \mathrm{m}, \mathrm{PCH}_{2} \mathrm{O}$), 3.97 ($1 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}$), 4.11 (2 H , $\left.\mathrm{m}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OP}\right), 4.46\left(1 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}\right), 4.66(2 \mathrm{H}, \mathrm{q}, J 7$, $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OAr}$), $5.37\left(1 \mathrm{H}, \mathrm{dtd}, J 9,8\right.$ and $\left.5,1^{\prime}-\mathrm{H}\right), 8.50(1 \mathrm{H}$, $\mathrm{s}, 2-$ or $8-\mathrm{H})$ and $8.63(1 \mathrm{H}$, br s, 8 - or $2-\mathrm{H})$; $\delta_{\mathrm{C}}(75.5 \mathrm{MHz}$; $\left.\mathrm{CD}_{3} \mathrm{OD}\right) 14.72\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OAr}\right)$, $17.21\left(\mathrm{CH}_{3}\right.$, d, ${ }^{3} \mathrm{~J}_{\mathrm{CP}} 6, \mathrm{CH}_{3}-$ $\left.\mathrm{CH}_{2} \mathrm{OP}\right)$, $37.91\left(\mathrm{CH}_{2}, 5^{\prime}-\mathrm{C}\right), 40.49\left(\mathrm{CH}_{2}, 2^{\prime}-\mathrm{C}\right), 53.59(\mathrm{CH}$, $\left.1^{\prime}-\mathrm{C}\right), 61.61\left(\mathrm{CH}_{2}, \mathrm{~d},{ }^{2} J_{\mathrm{CP}} 6, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OP}\right), 64.15\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OAr}\right)$, $66.43\left(\mathrm{CH}_{2}, \mathrm{~d},{ }^{1} J_{\mathrm{CP}} 159, \mathrm{PCH}_{2} \mathrm{O}\right), 75.57\left(\mathrm{CH}, 3^{\prime}-\mathrm{C}\right), 88.43(\mathrm{CH}$, d, $\left.{ }^{3} J_{\mathrm{CP}} 12,4^{\prime}-\mathrm{C}\right), 121.90(\mathrm{C}, \mathrm{br}), 143.58(\mathrm{CH}, \mathrm{br}), 152.82(\mathrm{CH})$, $153.19(\mathrm{C}, \mathrm{br})$ and $161.72(\mathrm{C}) ; \delta_{\mathrm{P}}\left(162.0 \mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{OD}\right)$ 16.76; $m / z 385\left[(\mathrm{M}-\mathrm{H})^{-}, 100 \%\right], 357$ (6), 163 (7) and 59 (15) [Found (FAB): $(\mathrm{M}-\mathrm{H})^{-}$, 385.1281. $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{P}$ requires m / z, 385.1277].

$3^{\prime}, 4^{\prime}$-Cyclic ester of 6 -ethoxy- $9-\left\{\left(1^{\prime} \beta, 3^{\prime} \alpha, 4^{\prime} \beta\right)-4^{\prime}\right.$-[ethoxy-(hydroxy)phosphorylmethoxy]-3'-hydroxycyclopentyl\}purine, compound 3

PyBOP ($170 \mathrm{mg}, 0.327 \mathrm{mmol}$) was added in a single portion to a solution of the monoacid $2(60 \mathrm{mg}, 0.155 \mathrm{mmol})$ and $N, N-$ diisopropylethylamine (DIEA) ($190 \mathrm{~mm}^{3}, 142 \mathrm{mg}, 1.10 \mathrm{mmol}$) in anhydrous DMF ($3.9 \mathrm{~cm}^{3}$). The reaction mixture was stirred overnight and then diluted with dichloromethane $\left(50 \mathrm{~cm}^{3}\right)$. Water $\left(50 \mathrm{~cm}^{3}\right)$ was added and the aqueous phase was extracted with further dichloromethane ($2 \times 50 \mathrm{~cm}^{3}$). The combined organic fractions were concentrated in vacuo. The residual DMF was azeotropically removed with toluene ($3 \times 50 \mathrm{~cm}^{3}$). The resultant oil was purified by flash column chromatography
eluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{EtOH}$ (95:5) to give the title compound 3 as a mixture of diastereomers $(\sim 3: 1)(46 \mathrm{mg}, 81 \%)$. The diastereomers were separated by flash column chromatography eluting with EtOAc-MeOH (95:5) to yield the faster running diastereomer as a glass ($34 \mathrm{mg}, 60 \%$); $v_{\max }$ (film) 2985w (C-H str.), 1598s (conj. cyclic $\mathrm{C}=\mathrm{N}$), 1575 m (conj. cyclic $\mathrm{C}=\mathrm{N}$), 1459 m , 1341 m and $1251 \mathrm{~m}(\mathrm{P}=\mathrm{O}), 1050 \mathrm{~m} \mathrm{~s}(\mathrm{C}-\mathrm{O}$ str. and $\mathrm{P}-\mathrm{O}$-alkyl) and $980 \mathrm{~m} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.38\left(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OP}\right)$, $1.51\left(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OAr}\right), 2.37\left(1 \mathrm{H}, \mathrm{td}, J 13\right.$ and $\left.9,5^{\prime}-\mathrm{H}^{\beta}\right)$, $2.44\left(2 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}_{2}\right), 2.58\left(1 \mathrm{H}, \mathrm{ddd}, J 13,9\right.$ and $\left.7,5^{\prime}-\mathrm{H}^{(}\right), 3.85$ $\left(1 \mathrm{H}\right.$, ddd, $J 13,9$ and $\left.7,4^{\prime}-\mathrm{H}\right), 3.94(1 \mathrm{H}$, dd, $J 14$ and 2 , PCHO), $4.28\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OP}\right.$ and PCHO), $4.67(2 \mathrm{H}, \mathrm{q}, J$ 7, $\left.\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OAr}\right), 5.10\left(1 \mathrm{H}, \mathrm{m}, 1^{\prime}-\mathrm{H}\right), 5.57\left(1 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}\right), 7.89$ $(1 \mathrm{H}, \mathrm{s}, 2-$ or $8-\mathrm{H})$ and $8.52(1 \mathrm{H}, \mathrm{s}, 8$ - or $2-\mathrm{H}) ; \delta_{\mathrm{C}}(100.6 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) \quad 14.50 \quad\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OAr}\right), \quad 16.62 \quad\left(\mathrm{CH}_{3}, \quad \mathrm{~d}, \quad{ }^{3} \mathrm{~J}_{\mathrm{CP}} \quad 5\right.$, $\left.\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OP}\right), 32.74\left(\mathrm{CH}_{2}, 5^{\prime}-\mathrm{C}\right), 33.73\left(\mathrm{CH}_{2}, \mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{CP}} 6,2^{\prime}-\mathrm{C}\right)$, $49.00\left(\mathrm{CH}, 1^{\prime}-\mathrm{C}\right), 63.19\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OAr}\right), 63.39\left(\mathrm{CH}_{2}, \mathrm{~d},{ }^{2} J_{\mathrm{CP}} 6\right.$, $\left.\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OP}\right), 64.54\left(\mathrm{CH}_{2}, \mathrm{~d},{ }^{1} J_{\mathrm{CP}} 145, \mathrm{PCH}_{2} \mathrm{O}\right), 80.29(\mathrm{CH}, \mathrm{d}$, $\left.{ }^{3} J_{\mathrm{CP}} 6.5,4^{\prime}-\mathrm{C}\right), 80.51\left(\mathrm{CH}, \mathrm{d},{ }^{2} J_{\mathrm{CP}} 4.5,3^{\prime}-\mathrm{C}\right), 140.58(\mathrm{CH})$, $151.33(\mathrm{C}), 152.25(\mathrm{CH})$ and $161.02(\mathrm{C}) ; \delta_{\mathrm{P}}\left(162.0 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ 15.40; $\mathrm{m} / \mathrm{z} 368\left(\mathrm{M}^{+}, 2 \%\right), 246(40)$ and $165\left[(\mathrm{BH}+\mathrm{H})^{+}, 100\right]$ [Found (EI): $\mathrm{M}^{+}, 368.1247 . \mathrm{C}_{15} \mathrm{H}_{21} \mathrm{~N}_{4} \mathrm{O}_{5} \mathrm{P}$ requires $M, 368.1250$]. Further elution yielded the slower running diastereomer as a glass ($12 \mathrm{mg}, 21 \%$); $v_{\max }(\mathrm{film}) 1598 \mathrm{~s}$ (conj. cyclic $\mathrm{C}=\mathrm{N}$), 1575 m (conj. cyclic $\mathrm{C}=\mathrm{N}$), $1461 \mathrm{~m}(\mathrm{C}-\mathrm{H}$ def.), $1341 \mathrm{~m}, 1320 \mathrm{~m}, 1251 \mathrm{~m}$ ($\mathrm{P}=\mathrm{O}$) , 1118m, 1098 m and 1034 m ($\mathrm{C}-\mathrm{O}$ str. and $\mathrm{P}-\mathrm{O}-\mathrm{alkyl}$); $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.50\left(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OP}\right), 1.51(3 \mathrm{H}$, $\left.\mathrm{t}, J 7, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OAr}\right), 2.37\left(1 \mathrm{H}\right.$, td, $J 12.5$ and $\left.9,5^{\prime}-\mathrm{H}^{\beta}\right), 2.45$ $\left(2 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}_{2}\right), 2.57\left(1 \mathrm{H}\right.$, ddd, $J 12.5,9$ and $\left.7,5^{\prime}-\mathrm{H}^{*}\right), 3.84$ (1 H , ddd, $J 12.5,9$ and $\left.7,4^{\prime}-\mathrm{H}\right), 3.99(1 \mathrm{H}, \mathrm{d}, J 15, \mathrm{PCHO})$, $4.22(1 \mathrm{H}, \mathrm{dd}, J 15$ and $11, \mathrm{PCHO}), 4.30\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3} \mathrm{CH} \mathrm{H}_{2} \mathrm{OP}\right)$, $4.67\left(2 \mathrm{H}, \mathrm{q}, J 7, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OAr}\right), 5.07(1 \mathrm{H}, \mathrm{qd}, J 9$ and 5 , $\left.1^{\prime}-\mathrm{H}\right), 5.42\left(1 \mathrm{H}, \mathrm{br} \mathrm{q}, J 9,3^{\prime}-\mathrm{H}\right), 7.88(1 \mathrm{H}, \mathrm{s}, 2-$ or $8-\mathrm{H})$ and $8.51(1 \mathrm{H}, \mathrm{s}, 8$ - or $2-\mathrm{H}) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 14.50$ $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OAr}\right), 16.47\left(\mathrm{CH}_{3}, \mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{CP}} 6, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OP}\right), 32.34$ $\left(\mathrm{CH}_{2}, 5^{\prime}-\mathrm{C}\right), 33.56\left(\mathrm{CH}_{2}, \mathrm{~d},{ }^{3} J_{\mathrm{CP}} 6,2^{\prime}-\mathrm{C}\right), 49.43\left(\mathrm{CH}, 1^{\prime}-\mathrm{C}\right)$, $62.23\left(\mathrm{CH}_{2}, \mathrm{~d},{ }^{2} J_{\mathrm{CP}} 7, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OP}\right), 63.23\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OAr}\right)$, $63.44\left(\mathrm{CH}_{2}, \mathrm{~d},{ }^{1} J_{\mathrm{CP}} 142, \mathrm{PCH}_{2} \mathrm{O}\right), 80.13\left(\mathrm{CH}, \mathrm{d},{ }^{3} J_{\mathrm{CP}} 6.5,4^{\prime}-\mathrm{C}\right)$, $81.52\left(\mathrm{CH}, \mathrm{d},{ }^{2} J_{\mathrm{CP}} 7,3^{\prime}-\mathrm{C}\right), 122.48(\mathrm{C}), 140.95(\mathrm{CH}), 152.04$ (CH) and $161.08(\mathrm{C}) ; \delta_{\mathrm{P}}\left(162.0 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 13.69 ; \mathrm{m} / \mathrm{z} 368$ $\left(\mathrm{M}^{+}, 7 \%\right), 246(24)$ and $165\left[(\mathrm{BH}+\mathrm{H})^{+}, 100\right]$ [Found (EI): M^{+}, 368.1264].

9-[(1' $\left.\beta, 3^{\prime} \alpha, 4^{\prime} \beta\right)-4^{\prime}$-(Diethoxyphosphorylmethoxy)-3'-hydroxycyclopentyl]adenine 4

The chloride $\mathbf{1}(72 \mathrm{mg}, 0.178 \mathrm{mmol})$ was dissolved in liquid ammonia, contained in a sealed steel bomb. The reaction vessel was allowed to warm to room temp. and was left overnight. The ammonia was evaporated off using a stream of nitrogen, and the product was dissolved in methanol and transferred to a round-bottomed flask. The solvent was removed in vacuo and the residue was purified using flash column chromatography and elution with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}(9: 1)$ to yield the title compound $\mathbf{4}$ as an oil ($57 \mathrm{mg}, 83 \%$); $R_{\mathrm{f}} 0.09$ [EtOAc-MeOH ($5: 1$)]; $\lambda_{\text {max }}(\mathrm{MeOH}) \quad 262\left(\varepsilon / 1000 \mathrm{~cm}^{3} \mathrm{~mol}^{-1} 13645\right) ; \quad v_{\max }($ film $)$ 3334 and 3180 both br, s (O-H str. and N-H str.), 2983s (C-H str.), 1647s ($\mathrm{N}-\mathrm{H}$ bend), 1598s (conj. cyclic $\mathrm{C}=\mathrm{N}$), 1572s (conj. cyclic $\mathrm{C}=\mathrm{N}$), 1476s ($\mathrm{C}-\mathrm{H}$ def.), 1248s ($\mathrm{P}=\mathrm{O}$), 1024s, br ($\mathrm{C}-\mathrm{O}$ str. and P-O-alkyl) and 754s; $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.33(6 \mathrm{H}$, $\left.2 \times \mathrm{t}, J 7,2 \times \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OP}\right), 2.07\left(1 \mathrm{H}, \mathrm{m}, 5^{\prime}-\mathrm{H}^{\mathrm{\beta}}\right), 2.36(2 \mathrm{H}, \mathrm{m}$, $\left.2^{\prime}-\mathrm{H}_{2}\right), 2.80\left(1 \mathrm{H}, \mathrm{ddd}, J 15,9\right.$ and $\left.5.5,5^{\prime}-\mathrm{H}^{u}\right), 3.92(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{PCH}_{2} \mathrm{O}\right), 4.00\left(1 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}\right), 4.17\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OP}\right)$, $4.53\left(1 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}\right), 5.28\left(1 \mathrm{H}, \mathrm{qd}, J 9\right.$ and $\left.5.5,1^{\prime}-\mathrm{H}\right), 6.26(2 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{NH}_{2}\right), 8.08(1 \mathrm{H}, \mathrm{s}, 2-$ or $8-\mathrm{H})$ and $8.30(1 \mathrm{H}, \mathrm{s}, 8$ - or $2-\mathrm{H})$; $\delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 16.48\left(\mathrm{CH}_{3}, \mathrm{~d},{ }^{3} J_{\mathrm{CP}} 5,2 \times \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OP}\right)$, $37.31\left(\mathrm{CH}_{2}, 5^{\prime}-\mathrm{C}\right), 40.03\left(\mathrm{CH}_{2}, 2^{\prime}-\mathrm{C}\right), 51.44\left(\mathrm{CH}, 1^{\prime}-\mathrm{C}\right), 62.66$ $\left(\mathrm{CH}_{2}, \mathrm{~d},{ }^{2} J_{\mathrm{CP}} 7, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OP}\right), 62.82\left(\mathrm{CH}_{2}, \mathrm{~d},{ }^{2} J_{\mathrm{CP}} 7\right.$, $\left.\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OP}\right), 63.96\left(\mathrm{CH}_{2}, \mathrm{~d},{ }^{1} J_{\mathrm{CP}} 168, \mathrm{PCH}_{2} \mathrm{O}\right), 74.91\left(\mathrm{CH}, 3^{\prime}-\right.$ C), 88.12 (CH, d, $\left.{ }^{3} J_{\text {CP }} 10,4^{\prime}-\mathrm{C}\right), 119.51$ (C), 139.33 (CH), $149.90(\mathrm{C}), 152.68(\mathrm{CH})$ and $155.65(\mathrm{C}) ; \delta_{\mathrm{P}}\left(162.0 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$
21.93; m/z $385\left(\mathrm{M}^{+}, 1 \%\right), 234(29), 136\left[(\mathrm{BH}+\mathrm{H})^{+}, 100\right]$ and 60 (88) [Found (EI): $\mathrm{M}^{+}, 385.1519 . \mathrm{C}_{15} \mathrm{H}_{24} \mathrm{~N}_{5} \mathrm{O}_{5} \mathrm{P}$ requires M, 385.1515].

9-\{1' $\beta, 3^{\prime} \alpha, 4^{\prime} \beta$)-4'-[Ethoxy(hydroxy)phosphorylmethoxy]-3'hydroxycyclopentyl\}adenine 5

Sodium hydroxide ($2 \mathrm{~m} ; 0.6 \mathrm{~cm}^{3}$) was added to a solution of the diester $4(56 \mathrm{mg}, 0.145 \mathrm{mmol})$ in $\mathrm{EtOH}\left(1 \mathrm{~cm}^{3}\right)$. The reaction mixture was stirred overnight, and then was neutralised to pH 7 with 1 m hydrochloric acid. The solvents were removed in vacuo and the resultant oil was purified by chromatography using a reversed-phase $\mathrm{C}-18$ column, eluting with water- $\mathrm{CH}_{3} \mathrm{CN}$ (95:5). The title compound $\mathbf{5}$ was isolated as a glass (48 mg , 93%); $v_{\max }(\mathrm{KBr}$ disc) 3401 and 3190 both br, s ($\mathrm{O}-\mathrm{H}$ str. and $\mathrm{N}-\mathrm{H}$ str.), 1648 s ($\mathrm{N}-\mathrm{H}$ bend), 1601s (conj. cyclic $\mathrm{C}=\mathrm{N}$), 1573 m (conj. cyclic $\mathrm{C}=\mathrm{N}$), 1200s $[(\mathrm{P}=\mathrm{O}) \mathrm{OH}]$ and $1047 \mathrm{~s}(\mathrm{C}-\mathrm{O}$ str. and $\mathrm{P}-\mathrm{O}-\mathrm{alkyl}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{OD}\right) 1.26(3 \mathrm{H}, \mathrm{t}, J 7$, $\left.\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OP}\right), 2.07\left(1 \mathrm{H}, \mathrm{m}, 5^{\prime}-\mathrm{H}^{\beta}\right), 2.34\left(2 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}_{2}\right), 2.76(1$ H , ddd, $J 15,9$ and $\left.6,5^{\prime}-\mathrm{H}^{\omega}\right)$, $3.72\left(2 \mathrm{H}, \mathrm{m}, \mathrm{PCH}_{2} \mathrm{O}\right), 3.93(1 \mathrm{H}$, $\left.\mathrm{m}, 4^{\prime}-\mathrm{H}\right), 3.99\left(2 \mathrm{H}\right.$, quin, $\left.J 7, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OP}\right), 4.45\left(1 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}\right)$, $5.25\left(1 \mathrm{H}, \mathrm{m}, 1^{\prime}-\mathrm{H}\right), 8.19(1 \mathrm{H}, \mathrm{s}, 2-$ or $8-\mathrm{H})$ and $8.41(1 \mathrm{H}, \mathrm{s}$, 8 - or $2-\mathrm{H}) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{OD}\right) 15.91\left(\mathrm{CH}_{3}, \mathrm{~d},{ }^{3} J_{\mathrm{CP}} 6\right.$, $\left.\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OP}\right), 36.72\left(\mathrm{CH}_{2}, 5^{\prime}-\mathrm{C}\right), 39.43\left(\mathrm{CH}_{2}, 2^{\prime}-\mathrm{C}\right), 51.93(\mathrm{CH}$, $\left.1^{\prime}-\mathrm{C}\right), 60.26\left(\mathrm{CH}_{2}, \mathrm{~d},{ }^{2} J_{\mathrm{CP}} 6, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OP}\right), 65.07\left(\mathrm{CH}_{2}, \mathrm{~d},{ }^{1} J_{\mathrm{CP}}\right.$ $\left.160, \mathrm{PCH}_{2} \mathrm{O}\right), 74.32\left(\mathrm{CH}, 3^{\prime}-\mathrm{C}\right), 87.15\left(\mathrm{CH}, \mathrm{d},{ }^{3} J_{\mathrm{CP}} 12,4^{\prime}-\mathrm{C}\right)$, $118.60(\mathrm{C}), 140.34(\mathrm{CH}), 149.27(\mathrm{C}), 152.06(\mathrm{CH})$ and 155.81 (C); $\delta_{\mathrm{P}}\left(162.0 \mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{OD}\right) 16.75 ; \mathrm{m} / \mathrm{z} 735\left\{\left[(\mathrm{M}-\mathrm{H})_{2} \mathrm{Na}\right]^{+}\right.$, $5 \%\}, 378\left[(\mathrm{M}+\mathrm{Na}-2 \mathrm{H})^{+}, 16\right]$ and $356\left[(\mathrm{M}-\mathrm{H})^{+}, 100\right]$ [Found (FAB): $(\mathrm{M}-\mathrm{H})^{+}$, 356.1118. $\mathrm{C}_{13} \mathrm{H}_{19} \mathrm{~N}_{5} \mathrm{O}_{5} \mathrm{P}$ requires $\mathrm{m} / \mathrm{z}, 356.1124]$.

$3^{\prime}, 4^{\prime}$-Cyclic ester of $9-\left\{\left(1^{\prime} \beta, 3^{\prime} \alpha, 4^{\prime} \beta\right)-4^{\prime}\right.$-[ethoxy(hydroxy)phos-phorylmethoxy]-3'-hydroxycyclopentyl\} adenine, compound 6

 $\operatorname{PyBOP}(150 \mathrm{mg}, 0.289 \mathrm{mmol})$ was added in a single portion to a solution of the monoacid $5(51 \mathrm{mg}, 0.143 \mathrm{mmol})$ and DIEA ($148 \mathrm{~mm}^{3}, 110 \mathrm{mg}, 0.85 \mathrm{mmol}$) in anhydrous DMF ($3.3 \mathrm{~cm}^{3}$). The reaction mixture was stirred overnight and was then diluted with dichloromethane $\left(50 \mathrm{~cm}^{3}\right)$. Water $\left(20 \mathrm{~cm}^{3}\right)$ was added and the aqueous phase was extracted with further dichloromethane ($2 \times 50 \mathrm{~cm}^{3}$). The combined organic fractions were concentrated in vacuo. The residual DMF was azeotropically removed with toluene $\left(3 \times 50 \mathrm{~cm}^{3}\right)$. The resultant oil was purified by flash column chromatography eluting with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-$ $\mathrm{EtOH}(9: 1)$ and then recolumning appropriate fractions, eluting with EtOAc-MeOH (9:1), to give the title compound 6 as an oil \{inseparable mixture of diastereomers $[\mathrm{A}: \mathrm{B}(\sim 3: 1)]\}(32$ $\mathrm{mg}, 66 \%$); $v_{\text {max }}$ (film) 3432s, br ($\mathrm{N}-\mathrm{H}$ str.), 1637s ($\mathrm{N}-\mathrm{H}$ bend), 1598 m (conj. cyclic $\mathrm{C}=\mathrm{N}$), 1256 ($\mathrm{P}=\mathrm{O}$), 1041m ($\mathrm{C}-\mathrm{O}$ str. and P-O-alkyl) and $981 \mathrm{~m} ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{OD}\right) 1.35(2 \mathrm{H}, \mathrm{t}, J 7$, $\left.\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OP}, \mathrm{A}\right), 1.46\left(1 \mathrm{H}, \mathrm{t}, \mathrm{J} 7, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OP}, \mathrm{B}\right), 2.29(1 \mathrm{H}, \mathrm{m}$, $\left.5^{\prime}-\mathrm{H}^{\beta}\right), 2.42\left(2 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}_{2}\right), 2.53\left(1 \mathrm{H}, \mathrm{m}, 5^{\prime}-\mathrm{H}^{\alpha}\right), 3.96(1 \mathrm{H}$, $\left.\mathrm{m}, 4^{\prime}-\mathrm{H}\right), 4.05(1 \mathrm{H}, \mathrm{m}, \mathrm{PCHO}), 4.25(3 \mathrm{H}, \mathrm{m}, \mathrm{PCHO}$ and $\left.\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OP}\right), 5.19\left(1 \mathrm{H}, \mathrm{m}, \mathrm{1}^{\prime}-\mathrm{H}\right), 5.44\left(0.3 \mathrm{H}, \mathrm{br} \mathrm{q}, J 9,3^{\prime}-\mathrm{H}\right.$, B), $5.53\left(0.7 \mathrm{H}\right.$, br q, $\left.J 9,3^{\prime}-\mathrm{H}, \mathrm{A}\right), 8.14(0.3 \mathrm{H}, \mathrm{s}, 2$ - or $8-\mathrm{H}, \mathrm{B})$, $8.15(0.7 \mathrm{H}, \mathrm{s}, 2$ - or $8-\mathrm{H}, \mathrm{A}), 8.21(0.3 \mathrm{H}, \mathrm{s}, 8$ - or $2-\mathrm{H}, \mathrm{B})$ and $8.22(0.7 \mathrm{H}, \mathrm{s}, 8$ - or $2-\mathrm{H}, \mathrm{A}) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{OD}\right) 15.35$ $\left(\mathrm{CH}_{3}, \mathrm{~d},{ }^{3} J_{\mathrm{CP}} 6, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OP}, \mathrm{B}\right), 15.44\left(\mathrm{CH}_{3}, \mathrm{~d},{ }^{3} J_{\mathrm{CP}} 5\right.$, $\left.\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OP}, \mathrm{A}\right), 31.74\left(\mathrm{CH}_{2}, 5^{\prime}-\mathrm{C}, \mathrm{B}\right), 31.86\left(\mathrm{CH}_{2}, 5^{\prime}-\mathrm{C}, \mathrm{A}\right)$, $32.71\left(\mathrm{CH}_{2}, \mathrm{~d},{ }^{3} J_{\mathrm{CP}} 6,2^{\prime}-\mathrm{C}, \mathrm{B}\right), 32.89\left(\mathrm{CH}_{2}, \mathrm{~d},{ }^{3} J_{\mathrm{CP}} 6,2^{\prime}-\mathrm{C}, \mathrm{A}\right)$, $49.02\left(\mathrm{CH}, 1^{\prime}-\mathrm{C}, \mathrm{A}\right), 49.17\left(\mathrm{CH}, 1^{\prime}-\mathrm{C}, \mathrm{B}\right), 62.12\left(\mathrm{CH}_{2}, \mathrm{~d},{ }^{2} J_{\mathrm{CP}} 7\right.$, $\left.\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OP}, \mathrm{B}\right), 62.34\left(\mathrm{CH}_{2}, \mathrm{~d},{ }^{1} J_{\mathrm{CP}} 142, \mathrm{PCH}_{2} \mathrm{O}, \mathrm{B}\right), 63.59$ $\left(\mathrm{CH}_{2}, \mathrm{~d},{ }^{1} J_{\mathrm{CP}} 144, \mathrm{PCH}_{2} \mathrm{O}, \mathrm{A}\right), 63.79\left(\mathrm{CH}_{2}, \mathrm{~d},{ }^{2} J_{\mathrm{CP}} 7\right.$, $\left.\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OP}, \mathrm{A}\right), 79.90\left(\mathrm{CH}, \mathrm{d},{ }^{3} J_{\mathrm{CP}} 6,4^{\prime}-\mathrm{C}, \mathrm{B}\right), 80.13(\mathrm{CH}, \mathrm{d}$, $\left.{ }^{3} J_{\mathrm{CP}} 6,4^{\prime}-\mathrm{C}, \mathrm{A}\right), 81.17\left(\mathrm{CH}, \mathrm{d},{ }^{2} J_{\mathrm{CP}} 5,3^{\prime}-\mathrm{C}, \mathrm{A}\right), 82.15(\mathrm{CH}, \mathrm{d}$, $\left.{ }^{2} J_{\mathrm{CP}} 7,3^{\prime}-\mathrm{C}, \mathrm{B}\right), 119.36$ (C), $140.51(\mathrm{CH}, \mathrm{A}), 140.66(\mathrm{CH}, \mathrm{B})$, $148.92(\mathrm{C}), 152.14(\mathrm{CH}, \mathrm{B}), 152.19(\mathrm{CH}, \mathrm{A})$ and $155.87(\mathrm{C})$; $\delta_{\mathrm{P}}\left(162.0 \mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{OD}\right) 15.80(0.3 \mathrm{P}, \mathrm{B})$ and $16.52(0.7 \mathrm{P}, \mathrm{A})$; $m / z 339\left(\mathrm{M}^{+}, 2 \%\right), 309(4), 217(46)$ and $136\left[(\mathrm{BH}+\mathrm{H})^{+}\right.$, 100] [Found (EI): M^{+}, 339.1088. $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{~N}_{5} \mathrm{O}_{4} \mathrm{P}$ requires M, 339.1096].
$3^{\prime}, 4^{\prime}$-Cyclic ester of $9-\left[\left(1^{\prime} \beta, 3^{\prime} \alpha, 4^{\prime} \beta\right)\right.$-4'-(dihydroxyphos-

 phorylmethoxy)-3'-hydroxycyclopentyl]adenine, compound 7TMSBr ($200 \mathrm{~mm}^{3}, 233 \mathrm{mg}, 1.52 \mathrm{mmol}$) was added dropwise to a cooled solution $\left(0^{\circ} \mathrm{C}\right)$ of the cyclic compound $6(15 \mathrm{mg}, 0.044$ $\mathrm{mmol})$ in anhydrous DMF $\left(0.8 \mathrm{~cm}^{3}\right)$. The reaction mixture was allowed to warm to room temp. and was stirred for 72 h . After the mixture had been cooled to $0^{\circ} \mathrm{C}$, water $\left(2 \mathrm{~cm}^{3}\right)$ was added; the mixture was again allowed to warm to room temp., and was stirred for a further 1 h . The solution was neutralised to pH 7 with 2 m sodium hydroxide and the aqueous phase was washed with diethyl ether $\left(2 \times 10 \mathrm{~cm}^{3}\right)$. The solvents were removed in vacuo and the resultant solid was purified by chromatography using a reversed-phase $\mathrm{C}-18$ column, eluting with water- $\mathrm{CH}_{3} \mathrm{CN}$ (95:5). The title compound 7 was isolated as a glass (12 mg , 90%); $v_{\max }(\mathrm{KBr}$ disc) 3432 m s , br ($\mathrm{N}-\mathrm{H}$ str.), 1638 ($\mathrm{N}-\mathrm{H}$ bend), 1598 m s (conj. cyclic $\mathrm{C}=\mathrm{N}$), 1572 m (conj. cyclic $\mathrm{C}=\mathrm{N}$), 1252 m s , $1209 \mathrm{~s}[(\mathrm{P}=\mathrm{O}) \mathrm{OH}]$ and $1057 \mathrm{~s}(\mathrm{C}-\mathrm{O}$ str. and $\mathrm{P}-\mathrm{O}-\mathrm{alkyl}) ; \delta_{\mathrm{H}}(400$ $\left.\mathrm{MHz} ; \mathrm{D}_{2} \mathrm{O}\right) 1.99\left(1 \mathrm{H}\right.$, td, $J 12.5$ and $\left.9,5^{\prime}-\mathrm{H}^{\beta}\right), 2.25(1 \mathrm{H}$, ddd, $J 14,9$ and $\left.3,2^{\prime}-\mathrm{H}\right), 2.38\left(1 \mathrm{H}, \mathrm{dt}, J 14\right.$ and $\left.11,2^{\prime}-\mathrm{H}\right), 2.61$ $\left(1 \mathrm{H}\right.$, ddd, $J 12.5,8$ and $\left.7,5^{\prime}-\mathrm{H}^{d}\right), 3.80(1 \mathrm{H}, \mathrm{dd}, J 14$ and 2 , PCHO), $3.85\left(1 \mathrm{H}\right.$, ddd, $J 12,9$ and $\left.7,4^{\prime}-\mathrm{H}\right), 4.00(1 \mathrm{H}, \mathrm{dd}, J 14$ and 9, PCHO), $4.88\left(1 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}\right), 5.05\left(1 \mathrm{H}, \mathrm{m}, 1^{\prime}-\mathrm{H}\right), 8.06$ $(1 \mathrm{H}, \mathrm{s}, 2-$ or $8-\mathrm{H})$ and $8.20(1 \mathrm{H}, \mathrm{s}, 8$ - or $2-\mathrm{H}) ; \delta_{\mathrm{C}}(100.6 \mathrm{MHz}$; $\left.\mathrm{D}_{2} \mathrm{O}\right) 32.22\left(\mathrm{CH}_{2}, 5^{\prime}-\mathrm{C}\right), 32.94\left(\mathrm{CH}_{2}, \mathrm{~d},{ }^{3} J_{\mathrm{CP}} 6,2^{\prime}-\mathrm{C}\right), 48.27(\mathrm{CH}$, $\left.1^{\prime}-\mathrm{C}\right), 65.34\left(\mathrm{CH}_{2}, \mathrm{~d},{ }^{1} J_{\mathrm{CP}} 141, \mathrm{PCH}_{2} \mathrm{O}\right), 79.68\left(\mathrm{CH}, \mathrm{d},{ }^{3} J_{\mathrm{CP}} 6.5\right.$, $\left.4^{\prime}-\mathrm{C}\right), 80.04\left(\mathrm{CH}, \mathrm{d},{ }^{2} J_{\mathrm{CP}} 5,3^{\prime}-\mathrm{C}\right), 118.5(\mathrm{C}, \mathrm{br}), 140.32(\mathrm{CH})$, $148.49(\mathrm{C}), 152.21(\mathrm{CH})$ and $155.27(\mathrm{C}) ; \delta_{\mathrm{P}}\left(162.0 \mathrm{MHz} ; \mathrm{D}_{2} \mathrm{O}\right)$ 11.81; m/z $310\left[(\mathrm{M}-\mathrm{H})^{+}, 100 \%\right]$, 205 (23), 113 (20) and 80 (4) [Found (FAB): $(\mathrm{M}-\mathrm{H})^{+}, 310.0709 . \mathrm{C}_{11} \mathrm{H}_{13} \mathrm{~N}_{5} \mathrm{O}_{4} \mathrm{P}$ requires $m / z, 310.0705]$.

9-[(1' $\left.\beta, \mathbf{4}^{\prime} \boldsymbol{\beta}\right)$-4'-(tert-Butyldimethylsiloxy)cyclopent-2'-enyl]-6chloropurine 9
 Imidazole ($764 \mathrm{mg}, 11.24 \mathrm{mmol}$) and TBDMSCl $(955 \mathrm{mg}, 6.32$

 $\mathrm{mmol})$ were added to a solution of the alcohol $\mathbf{8}(1.25 \mathrm{~g}, 5.28$ $\mathrm{mmol})$ in dry DMF ($14 \mathrm{~cm}^{3}$). The reaction mixture was stirred under an inert atmosphere for 1 h . Dichloromethane ($100 \mathrm{~cm}^{3}$) and water $\left(50 \mathrm{~cm}^{3}\right)$ were added, and the aqueous portion was extracted with dichloromethane ($3 \times 100 \mathrm{~cm}^{3}$). The combined organic fractions were washed with brine ($20 \mathrm{~cm}^{3}$), dried over magnesium sulfate, and the solvent was removed in vacuo. Flash column chromatography, eluting first with light petroleum and then light petroleum-EtOAc (1:1), gave the title compound $\mathbf{9}$ as a crystalline solid ($1.80 \mathrm{~g}, 97 \%$); $\mathrm{mp} 68-70^{\circ} \mathrm{C} ; R_{\mathrm{f}} 0.68$ (EtOAc) [Found: (EI) M ${ }^{+}, 350.1336 ; \mathrm{C}, 54.6 ; \mathrm{H}, 6.6 ; \mathrm{N}, 16.0 \% . \mathrm{C}_{16} \mathrm{H}_{23} \mathrm{Cl}-$ $\mathrm{N}_{4} \mathrm{OSi}$ requires $M, 350.1330 ; \mathrm{C}, 54.8 ; \mathrm{H}, 6.6 ; \mathrm{N}, 16.0 \%$]; $v_{\text {max }}{ }^{-}$ (KBr disc) 2957, 2931, 2888 and 2858 all s (all C-H str.), 1589 s (conj. cyclic $\mathrm{C}=\mathrm{N}$), 1552s (conj. cyclic $\mathrm{C}=\mathrm{N}$), 1398s $\left(\mathrm{CH}_{3}\right.$ sym. def.), 1332s, 1259s $\left[\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right]$, 1173s, 1072s and 897s; $\delta_{\mathrm{H}}(300$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.08\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{Si}\right), 0.12\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{Si}\right), 0.89(9$ $\left.\mathrm{H}, \mathrm{s},{ }^{\dagger} \mathrm{BuSi}\right), 1.84\left(1 \mathrm{H}, \mathrm{dt}, J 14.5\right.$ and $\left.2.5,5^{\prime}-\mathrm{H}^{\beta}\right), 2.91(1 \mathrm{H}$, ddd, $J 14.5,8$ and $\left.6.5,5^{\prime}-\mathrm{H}^{\alpha}\right), 4.91\left(1 \mathrm{H}\right.$, ddd, $J 6.5,2.5$ and $\left.2,4^{\prime}-\mathrm{H}\right)$, $5.69\left(1 \mathrm{H}, \mathrm{dtd}, J 8,2.5\right.$ and $\left.2,1^{\prime}-\mathrm{H}\right), 5.80(1 \mathrm{H}, \mathrm{dd}, J 5.5$ and 2.5 , $\left.2^{\prime}-\mathrm{H}\right), 6.24\left(1 \mathrm{H}, \mathrm{dt}, J 5.5\right.$ and $\left.2,3^{\prime}-\mathrm{H}\right), 8.36(1 \mathrm{H}, \mathrm{s}, 8-\mathrm{H})$ and $8.72(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}) ; \delta_{\mathrm{C}}\left(75.5 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)-4.84\left(\mathrm{CH}_{3} \mathrm{Si}\right)$, $\left.-4.69\left(\mathrm{CH}_{3} \mathrm{Si}\right), 18.02\left[\mathrm{C}\left({ }^{t} \mathrm{Bu}\right)\right], 25.79\left[3 \times \mathrm{CH}_{3}{ }^{(} \mathrm{Bu}\right)\right], 41.95$ $\left(\mathrm{CH}_{2}, 5^{\prime}-\mathrm{C}\right), 57.36\left(\mathrm{CH}, 1^{\prime}-\mathrm{C}\right), 75.16\left(\mathrm{CH}, 4^{\prime}-\mathrm{C}\right), 130.66$ ($\mathrm{CH}, 2^{\prime}-\mathrm{C}$), 131.68 (C), 139.86 (CH, $\left.3^{\prime}-\mathrm{C}\right), 144.62(\mathrm{CH})$, $150.83(\mathrm{C}), 151.36(\mathrm{C})$ and $151.75(\mathrm{CH}) ; m / z 350\left(\mathrm{M}^{+}, 1 \%\right)$, $335\left[\left(\mathrm{M}-\mathrm{CH}_{3}\right)^{+}, 2\right], 293\left[\left(\mathrm{M}-{ }^{t} \mathrm{Bu}\right)^{+}, 100\right], 211$ (34), 139 (68) and 75 (49).
9-[(1' $\left.\boldsymbol{\beta}, \mathbf{2}^{\prime} \boldsymbol{\alpha}, \mathbf{3}^{\prime} \boldsymbol{\alpha}, \mathbf{4}^{\prime} \boldsymbol{\beta}\right)$-4'-(tert-Butyldimethylsiloxy)-2', $\mathbf{3}^{\prime}$ -dihydroxycyclopentyl]-6-chloropurine 10

To a solution of the olefin $9(1.80 \mathrm{~g}, 5.14 \mathrm{mmol})$ in tert-butyl alcohol $\left(120 \mathrm{~cm}^{3}\right)$ and water $\left(120 \mathrm{~cm}^{3}\right)$ were added potassium hexacyanoferrate(III) ($6.39 \mathrm{~g}, 19.42 \mathrm{mmol}$), potassium carbonate $(3.67 \mathrm{~g}, 26.59 \mathrm{mmol})$ and osmium tetraoxide $\left(1 \mathrm{~cm}^{3}, 0.018\right.$ mol equiv.; $2.5 \mathrm{wt} \%$ solution in $\mathrm{Bu}^{t} \mathrm{OH}$). The mixture was stirred at room temp. for 24 h . Sodium sulfite $(2.04 \mathrm{~g}, 16.19$
mmol) was added and the mixture was stirred for a further 3 h . The mixture was filtered through Celite ${ }^{\circledR}$, which was washed with ethyl acetate. The solvents were removed in vacuo and the residue was taken up in water $\left(100 \mathrm{~cm}^{3}\right)$ and extracted with dichloromethane $\left(3 \times 200 \mathrm{~cm}^{3}\right)$. The combined organic phase was dried over magnesium sulfate, and the solvent was removed in vacuo to give the title compound $\mathbf{1 0}$ as a crystalline solid (1.68 g, 85%); mp 173-175 ${ }^{\circ} \mathrm{C}$ (from EtOAc); $R_{\mathrm{f}} 0.42\left[\mathrm{MeOH}-\mathrm{CHCl}_{3}\right.$ (1:9)] (Found: C, 49.8; H, 6.6; N, 14.4. $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{ClN}_{4} \mathrm{O}_{3} \mathrm{Si}$ requires C, 49.9; H, 6.55; N, 14.55%); $v_{\text {max }}(\mathrm{KBr}$ disc) 3384 m , br ($\mathrm{O}-\mathrm{H}$ str.), 2955, 2931 and 2858 all m (C-H str.), 1592s (conj. cyclic $\mathrm{C}=\mathrm{N}$), 1560 s (conj. cyclic $\mathrm{C}=\mathrm{N}$), $1399 \mathrm{~ms}\left(\mathrm{CH}_{3}\right.$ sym. def.), 1337s ($\mathrm{O}-\mathrm{H}$ bend), 1256s $\left[\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right], 1077 \mathrm{~s}(\mathrm{C}-\mathrm{O}$ str. and P-O-alkyl) and $837 \mathrm{~m} \mathrm{~s} ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.12(6 \mathrm{H}, \mathrm{s}$, $\left.2 \times \mathrm{CH}_{3} \mathrm{Si}\right), 0.90\left(9 \mathrm{H}, \mathrm{s},{ }^{\mathrm{B}}{ }^{\mathrm{BuSi}}\right), 2.02(1 \mathrm{H}, \mathrm{ddd}, J 14.5,6.5$ and $\left.2.5,5^{\prime}-\mathrm{H}^{\beta}\right), 2.99\left(1 \mathrm{H}\right.$, ddd, $J 14.5,10$ and $\left.6,5^{\prime}-\mathrm{H}^{*}\right), 3.30(1 \mathrm{H}$, $\mathrm{br}, \mathrm{OH}), 4.09\left(1 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}\right), 4.30\left(1 \mathrm{H}, \mathrm{dt}, J 6\right.$ and $\left.2.5,4^{\prime}-\mathrm{H}\right)$, $4.63\left(1 \mathrm{H}, \mathrm{m}, 2^{\prime}-\mathrm{H}\right), 4.70(1 \mathrm{H}, \mathrm{br}, \mathrm{OH}), 4.97(1 \mathrm{H}, \mathrm{dt}, J 10$ and $\left.6.5,1^{\prime}-\mathrm{H}\right), 8.29(1 \mathrm{H}, \mathrm{s}, 8-\mathrm{H})$ and $8.67(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}) ; \delta_{\mathrm{C}}(75.5$ MHz; $\left.\mathrm{CDCl}_{3}\right)-4.90\left(\mathrm{CH}_{3} \mathrm{Si}\right),-4.83\left(\mathrm{CH}_{3} \mathrm{Si}\right), 18.01\left[\mathrm{C}\left({ }^{(} \mathrm{Bu}\right)\right]$, $25.76\left[3 \times \mathrm{CH}_{3}\left({ }^{(} \mathrm{Bu}\right)\right]$, $37.69\left(\mathrm{CH}_{2}, 5^{\prime}-\mathrm{C}\right), 60.49\left(\mathrm{CH}, 1^{\prime}-\mathrm{C}\right)$, $75.42(\mathrm{CH}), 77.78(\mathrm{CH}), 78.20(\mathrm{CH}), 131.67(\mathrm{C}), 144.31(\mathrm{CH})$, $151.12(\mathrm{C}), 151.60(\mathrm{CH})$ and $151.92(\mathrm{C}) ; m / z 384\left(\mathrm{M}^{+}, 4 \%\right)$, $383\left[(\mathrm{M}-\mathrm{H})^{+}, 11\right], 369\left[\left(\mathrm{M}-\mathrm{CH}_{3}\right)^{+}, 6\right], 327\left[\left(\mathrm{M}-{ }^{\mathrm{t}} \mathrm{Bu}\right)^{+}, 89\right]$ and $155\left[(\mathrm{BH}+\mathrm{H})^{+}, 100\right]$ [Found: $\left(\mathrm{M}-{ }^{t} \mathrm{Bu}\right)^{+}, 327.0682$. $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{ClN}_{4} \mathrm{O}_{3} \mathrm{Si}$ requires $\mathrm{m} / \mathrm{z}, \quad 327.0680 ; \quad\left(\mathrm{M}-\mathrm{CH}_{3}\right)^{+}$, 369.1148. $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{ClN}_{4} \mathrm{O}_{3} \mathrm{Si}$ requires $m / z, 369.1150$].

9-[($\left.\mathbf{1}^{\prime} \boldsymbol{\beta}, \mathbf{2}^{\prime} \boldsymbol{\alpha}, \mathbf{3}^{\prime} \boldsymbol{\alpha}, \mathbf{4}^{\prime} \boldsymbol{\beta}\right)-\mathbf{4}^{\prime}$-(tert-Butyldimethylsiloxy) $-\mathbf{2}^{\prime}, \mathbf{3}^{\prime}$ -

 isopropylidenedioxycyclopentyl]-6-chloropurine 11To a solution of the diol $\mathbf{1 0}(65 \mathrm{mg}, 0.169 \mathrm{mmol})$ in dry DMF $\left(0.8 \mathrm{~cm}^{3}\right)$ were added PTSA ($4 \mathrm{mg}, 0.02 \mathrm{mmol}$) and freshly distilled 2,2-dimethoxypropane (2,2-DMP) $\left(1.2 \mathrm{~cm}^{3}\right)$. The mixture was stirred under an inert atmosphere at room temp. for 48 h , then was diluted with water $\left(8 \mathrm{~cm}^{3}\right)$ and extracted with ethyl acetate $\left(3 \times 10 \mathrm{~cm}^{3}\right)$. The combined organic phase was dried over magnesium sulfate and the solvents were removed in vacuo to give an oil. Purification by flash column chromatography eluting with ethyl acetate yielded the title compound 11 as a crystalline solid ($44 \mathrm{mg}, 61 \%$); $R_{\mathrm{f}} 0.73$ (EtOAc); mp 112$114^{\circ} \mathrm{C}$; $v_{\max }(\mathrm{KBr}$ disc) $2932 \mathrm{~m} \mathrm{~s}(\mathrm{C}-\mathrm{H}$ str.), 1589s (conj. cyclic $\mathrm{C}=\mathrm{N}$), 1566 and 1560 both m (conj. cyclic $\mathrm{C}=\mathrm{N}$), 1259 m s $\left[\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{2}\right], 1209 \mathrm{~s}, 1135 \mathrm{~s}, 1081 \mathrm{~s}, 877 \mathrm{~s}$ and $838 \mathrm{~s} ; \delta_{\mathrm{H}}(300 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 0.10\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{Si}\right), 0.14\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{Si}\right), 0.89(9 \mathrm{H}, \mathrm{s}$, $\left.{ }^{t} \mathrm{BuSi}\right), 1.32\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{C}\right), 1.52\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{C}\right), 2.13(1 \mathrm{H}$, dquin, $J 15$ and $\left.1.5,5^{\prime}-\mathrm{H}^{\beta}\right), 2.81\left(1 \mathrm{H}\right.$, ddd, $J 15,8$ and $\left.5,5^{\prime}-\mathrm{H}^{u}\right)$, $4.47\left(1 \mathrm{H}\right.$, br d, $\left.J 5,4^{\prime}-\mathrm{H}\right), 4.60\left(1 \mathrm{H}\right.$, br d, $\left.J 5.5,3^{\prime}-\mathrm{H}\right), 4.89(1$ H , br d, $\left.J 5.5,2^{\prime}-\mathrm{H}\right), 5.18\left(1 \mathrm{H}\right.$, br d, $\left.J 8,1^{\prime}-\mathrm{H}\right), 8.51(1 \mathrm{H}, \mathrm{s}, 8-$ $\mathrm{H})$ and $8.77(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}) ; \delta_{\mathrm{C}}\left(62.9 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)-4.99\left(\mathrm{CH}_{3} \mathrm{Si}\right)$, $-4.90\left(\mathrm{CH}_{3} \mathrm{Si}\right), 18.16\left[\mathrm{C}\left({ }^{(} \mathrm{Bu}\right)\right], 24.20\left(\mathrm{CH}_{3} \mathrm{C}\right), 25.84\left[3 \times \mathrm{CH}_{3}\right.$ $\left.\left({ }^{(} \mathrm{Bu}\right)\right], 26.63\left(\mathrm{CH}_{3} \mathrm{C}\right), 37.57\left(\mathrm{CH}_{2}, 5^{\prime}-\mathrm{C}\right), 61.41\left(\mathrm{CH}, 1^{\prime}-\mathrm{C}\right)$, $77.74(\mathrm{CH}), 86.03(\mathrm{CH}), 87.34(\mathrm{CH}), 111.70\left[\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{2}\right]}\right], 131.63$ (C), $145.00(\mathrm{CH})$ and $151.89(\mathrm{CH}) ; m / z 424\left(\mathrm{M}^{+}, 1 \%\right), 409$ [(M $\left.-\mathrm{CH}_{3}\right)^{+}$, 9], 369 (62), $368(41), 367\left[\left(\mathrm{M}-{ }^{t} \mathrm{Bu}\right)^{+}, 92\right]$ and $155\left[(\mathrm{BH}+\mathrm{H})^{+}, 100\right]$ [Found (EI): M^{+}, 424.1678. $\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{Cl}-$ $\mathrm{N}_{4} \mathrm{O}_{3} \mathrm{Si}$ requires $\left.M, 424.1697\right]$.

6-Chloro-9-[($\left.1^{\prime} \beta, 2^{\prime} \alpha, 3^{\prime} \alpha, 4^{\prime} \beta\right)-4^{\prime}$-hydroxy-2', $\mathbf{3}^{\prime}$-isopropylidenedioxycyclopentyl]purine 12

Method A. A solution of the silyl ether $11(40 \mathrm{mg}, 0.094$ mmol) and ammonium fluoride ($48 \mathrm{mg}, 1.30 \mathrm{mmol}$) in methanol $\left(1.9 \mathrm{~cm}^{3}\right)$ was stirred at $60^{\circ} \mathrm{C}$ for ca. 3 h . Silica gel $(0.5 \mathrm{~g})$ was added and the mixture was evaporated to a dry powder in vacuo. This was added to the top of a pre-packed silica column. The column was eluted with ethyl acetate to yield the title compound $\mathbf{1 2}$ as a crystalline solid ($28 \mathrm{mg}, 100 \%$). Data were consistent with those described below.

Method B. To a solution of the diol $\mathbf{1 0}(1.56 \mathrm{~g}, 4.06 \mathrm{mmol})$ in dry DMF $\left(19 \mathrm{~cm}^{3}\right)$ were added PTSA ($770 \mathrm{mg}, 4.05 \mathrm{mmol}, 1$ mol equiv.) and freshly distilled 2,2-DMP ($30 \mathrm{~cm}^{3}$). The mixture
was stirred under an inert atmosphere at room temp. for 48 h and then was diluted with water $\left(50 \mathrm{~cm}^{3}\right)$. The aqueous phase was washed with light petroleum $\left(2 \times 100 \mathrm{~cm}^{3}\right)$ and was then extracted with dichloromethane $\left(3 \times 100 \mathrm{~cm}^{3}\right)$. The combined extracts were dried over magnesium sulfate and the solvents were removed in vacuo. The residual DMF was azeotropically removed with toluene. The pure title compound 12 was thus obtained as a crystalline solid ($1.22 \mathrm{~g}, 97 \%$); $R_{\mathrm{f}} 0.34$ (EtOAc); mp 170-172 ${ }^{\circ} \mathrm{C}$ [Found: (EI) M^{+}, 310.0837; C, 50.1 ; H, 4.9; N, $17.9 \% . \mathrm{C}_{13} \mathrm{H}_{15} \mathrm{ClN}_{4} \mathrm{O}_{3}$ requires $M, 310.0833 ; \mathrm{C}, 50.25 ; \mathrm{H}, 4.9 ; \mathrm{N}$, 18.0%]; $v_{\text {max }}(\mathrm{KBr}$ disc) 3380 br , m s (O-H str.), 2934m w (C-H str.), 1594 s (conj. cyclic $\mathrm{C}=\mathrm{N}$), 1564 s m (conj. cyclic $\mathrm{C}=\mathrm{N}$), $1210 \mathrm{~s}, 1054 \mathrm{~s}(\mathrm{C}-\mathrm{O}$ str. $)$ and $635 \mathrm{~m}(\mathrm{C}-\mathrm{Cl}) ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ $1.29\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{C}\right), 1.51\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{C}\right), 2.25(1 \mathrm{H}$, dquin, $J 15$ and $\left.1.5,5^{\prime}-\mathrm{H}^{\beta}\right), 2.87\left(1 \mathrm{H}\right.$, ddd, $J 15,9$ and $\left.5,5^{\prime}-\mathrm{H}^{\alpha}\right), 4.47(1 \mathrm{H}$, br, OH), $4.56\left(1 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}\right), 4.72\left(1 \mathrm{H}\right.$, br d, $\left.J 5.5,3^{\prime}-\mathrm{H}\right), 4.89$ (1 H , br d, $\left.J 5.5,2^{\prime}-\mathrm{H}\right), 5.11\left(1 \mathrm{H}\right.$, br d, $\left.J 9,1^{\prime}-\mathrm{H}\right), 8.58(1 \mathrm{H}, \mathrm{s}$, $8-\mathrm{H})$ and $8.74(1 \mathrm{H}, \mathrm{s}, 2-\mathrm{H}) ; \delta_{\mathrm{C}}\left(75.5 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 24.22\left(\mathrm{CH}_{3}\right)$, $26.70\left(\mathrm{CH}_{3}\right), 36.86\left(\mathrm{CH}_{2}, 5^{\prime}-\mathrm{C}\right), 62.39\left(\mathrm{CH}, 1^{\prime}-\mathrm{C}\right), 76.05(\mathrm{CH})$, $86.26(\mathrm{CH}), 87.05(\mathrm{CH}), 111.79\left[\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{2}\right], 131.62(\mathrm{C}), 145.81}\right.$ $(\mathrm{CH}), 150.95(\mathrm{C}), 151.50(\mathrm{C})$ and $151.74(\mathrm{CH}) ; m / z 310\left(\mathrm{M}^{+}\right.$, $5 \%), 295\left[\left(\mathrm{M}-\mathrm{CH}_{3}\right)^{+}, 24\right], 252\left\{\left[\mathrm{M}-\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO}\right]^{+}, 65\right\}, 235$ (64), $181(100)$ and $155\left[(\mathrm{BH}+\mathrm{H})^{+}, 95\right]$.

9-[(1' $\left.\beta, 2^{\prime} \alpha, 3^{\prime} \alpha, 4^{\prime} \beta\right)-4^{\prime}$-Hydroxy- $2^{\prime}, 3^{\prime}$-isopropylidenedioxycyclo-pentyl]-6-methoxypurine 13

Potassium carbonate ($36 \mathrm{mg}, 0.261 \mathrm{mmol}$) was added to a solution of the chloride $12(40 \mathrm{mg}, 0.129 \mathrm{mmol})$ in anhydrous methanol $\left(2 \mathrm{~cm}^{3}\right)$. The mixture was heated at reflux for 2 h and then cooled to room temp. The solvent was evaporated off in vacuo and water $\left(20 \mathrm{~cm}^{3}\right)$ was added. The aqueous phase was then extracted with dichloromethane $\left(3 \times 50 \mathrm{~cm}^{3}\right)$. The pure title compound 13 was obtained as a solid ($36 \mathrm{mg}, 91 \%$); $R_{\mathrm{f}} 0.26$ (EtOAc); $\mathrm{mp} 167-168^{\circ} \mathrm{C}$; $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right.$ solution) 3257 br w (O-H str.), 2997m w (C-H str.), 1603s (conj. cyclic $\mathrm{C}=\mathrm{N}$), 1581 m (conj. cyclic $\mathrm{C}=\mathrm{N}$) , $1481 \mathrm{~m}, 1324(\mathrm{O}-\mathrm{H}$ bend) and $1034 \mathrm{~m} \mathrm{~s}(\mathrm{C}-\mathrm{O}$ str.); $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.28\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{C}\right), 1.50(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{3} \mathrm{C}\right), 2.20\left(1 \mathrm{H}\right.$, br d, $\left.J 15.5,5^{\prime}-\mathrm{H}^{\beta}\right), 2.89(1 \mathrm{H}$, br ddd, $J 15.5$, 9.5 and $\left.5.5,5^{\prime}-\mathrm{H}^{\alpha}\right), 4.16\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{O}\right), 4.52(1 \mathrm{H}$, br d, $J 5.5$, $\left.4^{\prime}-\mathrm{H}\right), 4.74\left(1 \mathrm{H}\right.$, br d, $\left.J 5.5,3^{\prime}-\mathrm{H}\right), 4.87\left(1 \mathrm{H}\right.$, br d, $\left.J 5.5,2^{\prime}-\mathrm{H}\right)$, $4.99\left(1 \mathrm{H}\right.$, br d, $\left.J 9.5,1^{\prime}-\mathrm{H}\right), 5.82(1 \mathrm{H}, \mathrm{br}, \mathrm{OH}), 8.26(1 \mathrm{H}, \mathrm{s}, 2-$ or $8-\mathrm{H})$ and $8.51(1 \mathrm{H}, \mathrm{s}, 8$ - or $2-\mathrm{H}) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ $24.37\left(\mathrm{CH}_{3} \mathrm{C}\right), 26.89\left(\mathrm{CH}_{3} \mathrm{C}\right), 37.58\left(\mathrm{CH}_{2}, 5^{\prime}-\mathrm{C}\right), 54.32\left(\mathrm{CH}_{3} \mathrm{O}\right)$, $62.96\left(\mathrm{CH}, 1^{\prime}-\mathrm{C}\right), 75.84\left(\mathrm{CH}, 4^{\prime}-\mathrm{C}\right), 86.56\left(\mathrm{CH}, 2^{\prime}-\mathrm{C}\right), 87.47$ $\left(\mathrm{CH}, 3^{\prime}-\mathrm{C}\right), 111.52\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right], 121.64(\mathrm{C}), 142.91(\mathrm{CH}), 151.08$ (C), $151.75(\mathrm{CH})$ and $161.13(\mathrm{C}) ; m / z 306\left(\mathrm{M}^{+}, 7 \%\right), 291$ $\left[\left(\mathrm{M}-\mathrm{CH}_{3}\right)^{+}, 13\right], 248\left\{\left[\mathrm{M}-\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO}\right]^{+}, 46\right\}, 231$ (98), 177 (100), $151\left[(\mathrm{BH}+\mathrm{H})^{+}, 51\right]$ and 120 (38) [Found (EI): M^{+}, 306.1333. $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{4}$ requires M, 306.1328].

9-\{(1' $\left.\beta, 2^{\prime} \alpha, 3^{\prime} \alpha, 4^{\prime} \beta\right)-4^{\prime}$-[Ethoxy(hydroxy)phosphorylmethoxy]$2^{\prime}, 3^{\prime}$-isopropylidenedioxycyclopentyl $\}$-6-methoxypurine 14

A solution of the alcohol $13(35 \mathrm{mg}, 0.114 \mathrm{mmol})$ in THF (1 $\left.\mathrm{cm}^{3}\right)$-DMF $\left(0.2 \mathrm{~cm}^{3}\right)$ was added dropwise to a suspension of sodium hydride ($15 \mathrm{mg}, 0.594 \mathrm{mmol} ; 95 \%$, dry) in THF ($1 \mathrm{~cm}^{3}$). The mixture was stirred for 3 h . A solution of ethyl hydrogen p-tolylsulfonyloxymethanephosphonate
$[(\mathrm{EtO})(\mathrm{HO})(\mathrm{P}=\mathrm{O})$ $\mathrm{CH}_{2} \mathrm{OTs}$] $(45 \mathrm{mg}, 0.153 \mathrm{mmol})$ in DMF $\left(0.5 \mathrm{~cm}^{3}\right)$ was then added dropwise. The reaction mixture was stirred for 24 h at room temp., cooled to $0^{\circ} \mathrm{C}$, and then quenched with glacial acetic acid $\left(0.5 \mathrm{~cm}^{3}\right)$. The solvents were removed in vacuo and the resultant oil was purified by chromatography using a reversed-phase $\mathrm{C}-18$ column, eluting with water $-\mathrm{CH}_{3} \mathrm{CN}(9: 1)$. The title compound 14 was isolated as a glass ($12 \mathrm{mg}, 25 \%$); $v_{\max }$ (film) 2985m (C-H str.), 1602s (conj. cyclic $\mathrm{C}=\mathrm{N}$), 1578 m s (conj. cyclic $\mathrm{C}=\mathrm{N}), 1479$ s ($\mathrm{C}-\mathrm{H}$ def.), 1211s $(\mathrm{P}=\mathrm{O})$ and 1057 s $(\mathrm{C}-\mathrm{O}$ str. and $\mathrm{P}-\mathrm{O}-\mathrm{alkyl}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{OD}\right) 1.17(3 \mathrm{H}, \mathrm{t}, J$ 7, $\left.\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OP}\right), 1.30\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{C}\right), 1.50\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{C}\right), 2.33$ $\left(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 15,5^{\prime}-\mathrm{H}^{\beta}\right), 2.72\left(1 \mathrm{H}\right.$, ddd, $J 15,8$ and $\left.5.5,5^{\prime}-\mathrm{H}^{\alpha}\right)$, $3.70\left(2 \mathrm{H}, \mathrm{m}, \mathrm{PCH}_{2} \mathrm{O}\right), 3.93\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OP}\right), 4.10(1 \mathrm{H}, \mathrm{m}$,
$\left.4^{\prime}-\mathrm{H}\right), 4.14\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{O}\right), 4.84\left(1 \mathrm{H}, \mathrm{m}, 3^{\prime}-\mathrm{H}\right), 4.96(1 \mathrm{H}$, br d, $\left.J 6,2^{\prime}-\mathrm{H}\right), 5.10\left(1 \mathrm{H}\right.$, ddd, $J 8,3$ and $\left.2,1^{\prime}-\mathrm{H}\right), 8.49(1 \mathrm{H}, \mathrm{s}, 2-$ or $8-\mathrm{H})$ and $8.63(1 \mathrm{H}, \mathrm{s}, 8-$ or $2-\mathrm{H}) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{OD}\right) 15.80$ $\left(\mathrm{CH}_{3}, \mathrm{~d},{ }^{3} J_{\mathrm{CP}} 6, C \mathrm{H}_{3} \mathrm{CH}_{2} \mathrm{OP}\right), 23.14\left(\mathrm{CH}_{3} \mathrm{C}\right), 25.54\left(\mathrm{CH}_{3} \mathrm{C}\right)$, $34.72\left(\mathrm{CH}_{2}, 5^{\prime}-\mathrm{C}\right), 53.42\left(\mathrm{CH}_{3} \mathrm{O}\right), 60.43\left(\mathrm{CH}_{2}, \mathrm{~d},{ }^{2} J_{\mathrm{CP}} 6\right.$, $\left.\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OP}\right), 60.59\left(\mathrm{CH}, 1^{\prime}-\mathrm{C}\right), 64.96\left(\mathrm{CH}_{2}, \mathrm{~d},{ }^{1} J_{\mathrm{CP}} 162\right.$, $\left.\mathrm{PCH}_{2} \mathrm{O}\right), 83.71\left(\mathrm{CH}, 3^{\prime}-\mathrm{C}\right), 85.28\left(\mathrm{CH}, 2^{\prime}-\mathrm{C}\right), 85.81\left(\mathrm{CH}, \mathrm{d},{ }^{3} J_{\mathrm{CP}}\right.$ $\left.12.5,4^{\prime}-\mathrm{C}\right), 111.66\left[\mathrm{C}_{\left.\left(\mathrm{CH}_{3}\right)_{2}\right], 120.12(\mathrm{C}), 143.40(\mathrm{CH}), 151.71}\right.$ (CH) and $160.64(\mathrm{C}) ; m / z 428\left(\mathrm{M}^{+}, 1 \%\right), 427\left[(\mathrm{M}-\mathrm{H})^{+}, 1\right], 224$ (27) and 105 (63) [Found (EI): $\mathrm{M}^{+}, 428.1446 ; \mathrm{C}_{17} \mathrm{H}_{25} \mathrm{~N}_{4} \mathrm{O}_{7} \mathrm{P}$ requires $M, 428.1461]$. Further elution yielded compound 16 (data were consistent with those described below).

6-Ethoxy-9-[(1' $\left.\beta, 2^{\prime} \alpha, 3^{\prime} \alpha, 4^{\prime} \beta\right)-4^{\prime}$-hydroxy-2', 3^{\prime}-isopropylidenedioxycyclopentyl]purine 15

Potassium carbonate $(360 \mathrm{mg}, 2.61 \mathrm{mmol})$ was added to a solution of the chloride $\mathbf{1 2}(400 \mathrm{mg}, 1.29 \mathrm{mmol})$ in anhydrous EtOH $\left(20 \mathrm{~cm}^{3}\right)$. The mixture was heated at reflux for 2 h and then was cooled to room temp. The solvent was evaporated off in vacuo, water $\left(50 \mathrm{~cm}^{3}\right)$ was added, and the aqueous phase was extracted with dichloromethane $\left(3 \times 100 \mathrm{~cm}^{3}\right)$. The pure title compound 15 was obtained as a solid ($374 \mathrm{mg}, 91 \%$); mp $154-157^{\circ} \mathrm{C}$; $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right.$ solution) 3250br w (O-H str.), 2993m (C-H str.), 1600 s (conj. cyclic $\mathrm{C}=\mathrm{N}$), 1579 m (conj. cyclic $\mathrm{C}=\mathrm{N}$), 1459 m ($\mathrm{C}-\mathrm{H}$ def.), $1342 \mathrm{~m} \mathrm{~s}, 1324 \mathrm{~m} \mathrm{~s}(\mathrm{O}-\mathrm{H}$ bend $)$ and $1033 \mathrm{~s}(\mathrm{C}-\mathrm{O}$ str.); $\delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.28\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{C}\right), 1.48(3 \mathrm{H}, \mathrm{t}, J 7$, $\left.\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}\right), 1.50\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{C}\right), 2.19\left(1 \mathrm{H}, \operatorname{br~d}, J 15.5,5^{\prime}-\mathrm{H}^{\beta}\right)$, $2.90\left(1 \mathrm{H}\right.$, ddd, $J 15.5,10$ and $\left.6.5,5^{\prime}-\mathrm{H}^{\alpha}\right), 4.52\left(1 \mathrm{H}, \mathrm{br}, 4^{\prime}-\mathrm{H}\right)$, $4.63\left(2 \mathrm{H}, \mathrm{q}, J 7, \mathrm{CH}_{3} \mathrm{CH} \mathrm{H}_{2} \mathrm{O}\right), 4.74\left(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 5.5,3^{\prime}-\mathrm{H}\right), 4.88$ (1 H , br d, $\left.J 5.5,2^{\prime}-\mathrm{H}\right), 4.97\left(1 \mathrm{H}, \mathrm{m}, 1^{\prime}-\mathrm{H}\right), 6.00(1 \mathrm{H}, \mathrm{br}, \mathrm{OH})$, $8.22(1 \mathrm{H}, \mathrm{s}, 2-$ or $8-\mathrm{H})$ and $8.48(1 \mathrm{H}, \mathrm{s}, 8-$ or $2-\mathrm{H}) ; \delta_{\mathrm{C}}(75.5$ $\left.\mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 14.48\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}\right), 24.38\left(\mathrm{CH}_{3} \mathrm{C}\right), 26.91\left(\mathrm{CH}_{3} \mathrm{C}\right)$, $37.72\left(\mathrm{CH}_{2}, 5^{\prime}-\mathrm{C}\right), 63.11\left(\mathrm{CH}, 1^{\prime}-\mathrm{C}\right), 63.35\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}\right), 75.77$ $\left(\mathrm{CH}, 4^{\prime}-\mathrm{C}\right), 86.56\left(\mathrm{CH}, 2^{\prime}-\mathrm{C}\right), 87.49\left(\mathrm{CH}, 3^{\prime}-\mathrm{C}\right), 111.50$ $\left[C\left(\mathrm{CH}_{3}\right)_{2}\right], 121.67(\mathrm{C}), 142.77(\mathrm{CH}), 150.96(\mathrm{C}), 151.72(\mathrm{CH})$ and $160.89(\mathrm{C}) ; m / z 321\left[(\mathrm{M}+\mathrm{H})^{+}, 6 \%\right], 320\left(\mathrm{M}^{+}, 1\right), 262$ $\left\{\left[\mathrm{M}-\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CO}\right]^{+}, 6\right\}, 245(14), 191(21), 136(32), 109(36), 81$ (60) and $59\left\{\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{COH}\right]^{+}, 100\right\}$ [Found (EI): $\mathrm{M}^{+}, 320.1483$; $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{4}$ requires $M, 320.1485$].

6-Ethoxy-9-\{(1' $\left.\beta, 2^{\prime} \alpha, 3^{\prime} \alpha, 4^{\prime} \beta\right)-4^{\prime}$-[ethoxy(hydroxy)phosphoryl-methoxy]-2', 3^{\prime}-isopropylidenedioxycyclopentyl\}purine 16

 A solution of the alcohol $15(374 \mathrm{mg}, 1.17 \mathrm{mmol})$ in THF (10 $\left.\mathrm{cm}^{3}\right)$-DMF $\left(1 \mathrm{~cm}^{3}\right)$ was added dropwise to a suspension of sodium hydride ($90 \mathrm{mg}, 3.56 \mathrm{mmol} ; 95 \%$ dry) in THF $\left(10 \mathrm{~cm}^{3}\right)$. The mixture was stirred for 3 h . A solution of ethyl hydrogen p-tolylsulfonyloxymethanephosphonate $\left[(\mathrm{EtO})(\mathrm{HO})(\mathrm{P}=\mathrm{O}) \mathrm{CH}_{2}{ }^{-}\right.$ OTs] ($400 \mathrm{mg}, 1.36 \mathrm{mmol}$) in DMF $\left(5 \mathrm{~cm}^{3}\right)$ was then added dropwise. The reaction mixture was stirred for 24 h , cooled to $0^{\circ} \mathrm{C}$, and then quenched with glacial acetic acid $\left(5 \mathrm{~cm}^{3}\right)$. The solvents were removed in vacuo and the resultant oil was purified by chromatography using a reversed-phase C-18 column, eluting with water- $\mathrm{CH}_{3} \mathrm{CN}(9: 1)$. The title compound 16 was isolated as a glass ($385 \mathrm{mg}, 75 \%$); $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right.$ solution) 2987 m ($\mathrm{C}-\mathrm{H}$ str.), 1598 s (conj. cyclic $\mathrm{C}=\mathrm{N}$), 1577 m (conj. cyclic $\mathrm{C}=\mathrm{N}$), $1457 \mathrm{~m}(\mathrm{C}-\mathrm{H}$ def.), 1238s $(\mathrm{P}=\mathrm{O})$ and $1057 \mathrm{~s}(\mathrm{C}-\mathrm{O}$ str. and $\mathrm{P}-\mathrm{O}-$ alkyl); $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{OD}\right) 1.16\left(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OP}\right)$, $1.28\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3} \mathrm{C}\right), 1.45\left(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OAr}\right), 1.48(3 \mathrm{H}$, $\left.\mathrm{s}, \mathrm{CH}_{3} \mathrm{C}\right), 2.31\left(1 \mathrm{H}\right.$, br d$\left., J 14,5^{\prime}-\mathrm{H}^{\beta}\right), 2.70(1 \mathrm{H}$, ddd, $J 14$, 8 and $\left.5.5,5^{\prime}-\mathrm{H}^{\alpha}\right), 3.71\left(2 \mathrm{H}, \mathrm{m}, \mathrm{PCH}_{2} \mathrm{O}\right), 3.94(2 \mathrm{H}$, quin, $\left.J 7, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OP}\right), 4.08\left(1 \mathrm{H}, \mathrm{m}, 4^{\prime}-\mathrm{H}\right), 4.61(2 \mathrm{H}, \mathrm{q}, J 7$, $\left.\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OAr}\right), 4.82\left(1 \mathrm{H}\right.$, br d, $\left.J 6,3^{\prime}-\mathrm{H}\right), 4.94(1 \mathrm{H}$, br d, $J 6$, $\left.2^{\prime}-\mathrm{H}\right), 5.09\left(1 \mathrm{H}, \mathrm{m}, 1^{\prime}-\mathrm{H}\right), 8.46(1 \mathrm{H}, \mathrm{s}, 2-$ or $8-\mathrm{H})$ and 8.64 $(1 \mathrm{H}, \mathrm{s}, 8-$ or $2-\mathrm{H}) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{OD}\right) 13.43\left(\mathrm{CH}_{3} \mathrm{CH}_{2}-\right.$ OAr), $15.84\left(\mathrm{CH}_{3}, \mathrm{~d},{ }^{3} J_{\mathrm{CP}} 6, C \mathrm{H}_{3} \mathrm{CH}_{2} \mathrm{OP}\right), 23.15\left(\mathrm{CH}_{3} \mathrm{C}\right)$, $25.56\left(\mathrm{CH}_{3} \mathrm{C}\right), 34.67\left(\mathrm{CH}_{2}, 5^{\prime}-\mathrm{C}\right), 60.37\left(\mathrm{CH}_{2}, \mathrm{~d},{ }^{2} J_{\mathrm{CP}} 5.5\right.$, $\left.\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OP}\right), 60.55\left(\mathrm{CH}, 1^{\prime}-\mathrm{C}\right), 64.22\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OAr}\right), 65.04$ $\left(\mathrm{CH}_{2}, \mathrm{~d},{ }^{1} J_{\mathrm{CP}} 165, \mathrm{PCH}_{2} \mathrm{O}\right), 83.70\left(\mathrm{CH}, 3^{\prime}-\mathrm{C}\right), 85.29\left(\mathrm{CH}, 2^{\prime}-\mathrm{C}\right)$, $85.82\left(\mathrm{CH}, \mathrm{d},{ }^{3} J_{\mathrm{CP}} 12,4^{\prime}-\mathrm{C}\right), 111.57\left[\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right], 120.11(\mathrm{C})$, $143.36(\mathrm{CH}), 151.70(\mathrm{CH})$ and $160.33(\mathrm{C}) ; \delta_{\mathrm{P}}(162.0 \mathrm{MHz}$;$\left.\mathrm{CD}_{3} \mathrm{OD}\right) 12.61 ; \mathrm{m} / \mathrm{z} 441$ [(M - H) ${ }^{-}, 100 \%$], $163\left(\mathrm{~B}^{+}, 56\right), 134$ (27), 79 (36) and 63 (44) [Found (FAB): $(\mathrm{M}-\mathrm{H})^{+}, 441.1545$. $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{~N}_{4} \mathrm{O}_{7} \mathrm{P}$ requires $m / z, 441.1539$].

6-Ethoxy-9-\{($\left.1^{\prime} \beta, 2^{\prime} \alpha, 3^{\prime} \alpha, 4^{\prime} \beta\right)-\mathbf{4}^{\prime}$-[ethoxy(hydroxy)phosphoryl-methoxy]-2', $\mathbf{3}^{\prime}$-dihydroxycyclopentyl purine 17
Hydrochloric acid ($5 \mathrm{~cm}^{3} ; 2 \mathrm{~m}$) was added to a solution of the acetonide $\mathbf{1 6}(200 \mathrm{mg}, 0.452 \mathrm{mmol})$ in THF $\left(5 \mathrm{~cm}^{3}\right)$. The reaction mixture was stirred overnight, and then was neutralised to pH 7 with sodium hydroxide (2 m). The solvents were removed in vacuo and the mixture was purified by using a reversed-phase column, eluent water- $\mathrm{CH}_{3} \mathrm{CN}$ (95:5). The title compound $\mathbf{1 7}$ was isolated as a glass $(148 \mathrm{mg}, 81 \%) ; \mathrm{mp} 130-135^{\circ} \mathrm{C} ; v_{\text {max }}(\mathrm{KBr}$ disc) 3393 br m ($\mathrm{O}-\mathrm{H}$ str.), 2984m w (C-H str.), 1602s (conj. cyclic $\mathrm{C}=\mathrm{N}$), 1577 m (conj. cyclic $\mathrm{C}=\mathrm{N}$), 1460 m ($\mathrm{C}-\mathrm{H}$ def.), $1318 \mathrm{~m}(\mathrm{O}-\mathrm{H}$ bend), $1233 \mathrm{~m}(\mathrm{P}=\mathrm{O})$ and $1053 \mathrm{~s}(\mathrm{C}-\mathrm{O}$ str. and P-O-alkyl); $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{D}_{2} \mathrm{O}\right) 1.22\left(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OP}\right)$, $1.39\left(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OAr}\right), 2.06(1 \mathrm{H}$, ddd, $J 14,8.5$ and $\left.4.5,5^{\prime}-\mathrm{H}^{\beta}\right), 2.86\left(1 \mathrm{H}\right.$, ddd, $J 14,8.5$ and $\left.7.5,5^{\prime}-\mathrm{H}^{\alpha}\right), 3.72(2 \mathrm{H}$, d, $\left.J 9, \mathrm{PCH}_{2} \mathrm{O}\right), 3.94\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OP}\right), 3.97(1 \mathrm{H}, \mathrm{m}$, $\left.4^{\prime}-\mathrm{H}\right), 4.22\left(1 \mathrm{H}, \mathrm{dd}, J 5.5\right.$ and $\left.2,3^{\prime}-\mathrm{H}\right), 4.40(2 \mathrm{H}, \mathrm{q}, J 7$, $\left.\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OAr}\right), 4.58\left(1 \mathrm{H}, \mathrm{dd}, J 8.5\right.$ and $\left.5.5,2^{\prime}-\mathrm{H}\right), 4.82(1 \mathrm{H}, \mathrm{q}$, $\left.J 8.5,1^{\prime}-\mathrm{H}\right), 8.21(1 \mathrm{H}, \mathrm{s}, 2-$ or $8-\mathrm{H})$ and $8.34(1 \mathrm{H}, \mathrm{s}, 8-$ or $2-\mathrm{H})$; $\delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{D}_{2} \mathrm{O}\right) 13.66\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OAr}\right), 16.12\left(\mathrm{CH}_{3}, \mathrm{~d},{ }^{3} J_{\mathrm{CP}}\right.$ 5, $\left.\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OP}\right), 33.21\left(\mathrm{CH}_{2}, 5^{\prime}-\mathrm{C}\right), 58.38\left(\mathrm{CH}, 1^{\prime}-\mathrm{C}\right), 61.42$ $\left(\mathrm{CH}_{2}, \mathrm{~d},{ }^{2} J_{\mathrm{CP}} 5.5, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OP}\right), 64.31\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OAr}\right), 64.46$ $\left(\mathrm{CH}_{2}, \mathrm{~d},{ }^{1} J_{\mathrm{CP}} 158, \mathrm{PCH}_{2} \mathrm{O}\right), 73.65\left(\mathrm{CH}, 3^{\prime}-\mathrm{C}\right), 75.56\left(\mathrm{CH}, 2^{\prime}-\mathrm{C}\right)$, $83.88\left(\mathrm{CH}, \mathrm{d},{ }^{3} J_{\mathrm{CP}} 12,4^{\prime}-\mathrm{C}\right), 120.40(\mathrm{C}), 142.63(\mathrm{CH}, \mathrm{br}), 151.41$ (CH) and $160.20(\mathrm{C}) ; \delta_{\mathrm{P}}\left(162.0 \mathrm{MHz} ; \mathrm{D}_{2} \mathrm{O}\right) 18.73 ; \mathrm{m} / \mathrm{z} 825$ $\left\{\left[(\mathrm{M}-\mathrm{H})_{2} \mathrm{Na}\right]^{+}, 6 \%\right\}, 423\left[(\mathrm{M}+\mathrm{Na}-2 \mathrm{H})^{+}, 17\right], 401$ $\left[(\mathrm{M}-\mathrm{H})^{+}, 100\right]$ and 163 (30) [Found (FAB): $(\mathrm{M}-\mathrm{H})^{+}$, 401.1220. $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{7} \mathrm{P}$ requires $\left.m / z, 402.1226\right]$.

$3^{\prime}, 4^{\prime}$-Cyclic ester of 6 -ethoxy- $9-\left\{\left(1^{\prime} \beta, 2^{\prime} \alpha, 3^{\prime} \alpha, 4^{\prime} \beta\right)-4^{\prime}\right.$-[ethoxy-(hydroxy)phosphorylmethoxy]-2', $\mathbf{3}^{\prime}$-dihydroxycyclopentyl $\}$ purine, compound 18

PyBOP ($200 \mathrm{mg}, 0.385 \mathrm{mmol}$) was added in a single portion to a solution of the monoacid $17(75 \mathrm{mg}, 0.187 \mathrm{mmol})$ and DIEA $\left(220 \mathrm{~mm}^{3}, 164 \mathrm{mg}, 1.27 \mathrm{mmol}\right)$ in anhydrous DMF ($4.5 \mathrm{~cm}^{3}$). The reaction mixture was stirred overnight and then was diluted with dichloromethane $\left(50 \mathrm{~cm}^{3}\right)$. Water $\left(50 \mathrm{~cm}^{3}\right)$ was added and the aqueous phase was extracted with more dichloromethane $\left(2 \times 50 \mathrm{~cm}^{3}\right)$. The combined organic fractions were concentrated in vacuo and the residual DMF was azeotropically removed with toluene ($3 \times 50 \mathrm{~cm}^{3}$). The resultant oil was purified by flash column chromatography eluting with $\mathrm{EtOAc}-\mathrm{MeOH}(95: 5)$ to give the title compound $\mathbf{1 8}$ as a mixture of diastereomers ($\sim 3: 1$) (55 $\mathrm{mg}, 76 \%)$. It was possible to separate the diastereomers by flash column chromatography eluting with $\mathrm{CHCl}_{3}-\mathrm{EtOH}$ (95:5) to yield the faster running diastereomer as a glass ($42 \mathrm{mg}, 58 \%$); $v_{\max }$ (film) 3344br m (O-H str.), 2988m (C-H str.), 1600s, (conj. cyclic $\mathrm{C}=\mathrm{N}$), 1577s (conj. cyclic $\mathrm{C}=\mathrm{N}$), 1460s ($\mathrm{C}-\mathrm{H}$ def.), 1342s ($\mathrm{O}-\mathrm{H}$ bend), $1320 \mathrm{~m} \mathrm{~s}, 1258 \mathrm{~s}(\mathrm{P}=\mathrm{O}), 1221 \mathrm{~m} \mathrm{~s}, 1118 \mathrm{~s}, 1053 \mathrm{~s}$ (C-O str. and P-O-alkyl), 983 m s and 753 m ; $\delta_{\mathrm{H}}(400 \mathrm{MHz}$; $\mathrm{CD}_{3} \mathrm{OD}$) $1.38\left(3 \mathrm{H}, \mathrm{td}, J 7\right.$ and $\left.0.5, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OP}\right), 1.48(3 \mathrm{H}, \mathrm{t}, J 7$, $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OAr}$), $2.26\left(1 \mathrm{H}\right.$, ddd, $J 12.5,11.5$ and $\left.9,5^{\prime}-\mathrm{H}^{\beta}\right), 2.59(1$ H , ddd, $J 12.5,9$ and $\left.7,5^{\prime}-\mathrm{H}^{*}\right), 4.06(1 \mathrm{H}, \mathrm{dd}, J 14$ and $1, \mathrm{PCHO})$, $4.27\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OP}, \mathrm{PCHO}\right.$ and $\left.4^{\prime}-\mathrm{H}\right), 4.39(1 \mathrm{H}, \mathrm{dd}, J 6$ and $\left.1,2^{\prime}-\mathrm{H}\right), 4.65\left(2 \mathrm{H}, \mathrm{q}, J 7, \mathrm{CH}_{3} \mathrm{C} H_{2} \mathrm{OAr}\right), 4.89(1 \mathrm{H}, \mathrm{td}, J 9$ and $\left.1,1^{\prime}-\mathrm{H}\right), 5.40\left(1 \mathrm{H}\right.$, ddd, $\left.{ }^{3} J_{\mathrm{HH}} 10,6,{ }^{3} J_{\mathrm{HP}} 1.5,3^{\prime}-\mathrm{H}\right), 8.31(1 \mathrm{H}$, $\mathrm{s}, 2$ - or $8-\mathrm{H})$ and $8.49(1 \mathrm{H}, \mathrm{s}, 8$ - or $2-\mathrm{H}) ; \delta_{\mathrm{c}}\left(100.6 \mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{OD}\right)$ $13.35\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OAr}\right), 15.39\left(\mathrm{CH}_{3}, \mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{CP}} 5, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OP}\right), 29.64$ $\left(\mathrm{CH}_{2}, 5^{\prime}-\mathrm{C}\right), 60.90\left(\mathrm{CH}, 1^{\prime}-\mathrm{C}\right), 62.92\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OAr}\right), 63.19$ $\left(\mathrm{CH}_{2}, \mathrm{~d},{ }^{1} J_{\mathrm{CP}} 145, \mathrm{PCH}_{2} \mathrm{O}\right), 63.95\left(\mathrm{CH}_{2}, \mathrm{~d},{ }^{2} J_{\mathrm{CP}} 7, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OP}\right)$, $72.23\left(\mathrm{CH}, \mathrm{d},{ }^{3} J_{\mathrm{CP}} 6,2^{\prime}-\mathrm{C}\right), 77.38\left(\mathrm{CH}, \mathrm{d},{ }^{3} J_{\mathrm{CP}} 6,4^{\prime}-\mathrm{C}\right), 82.01$ $\left(\mathrm{CH}, \mathrm{d},{ }^{2} J_{\mathrm{CP}} 5,3^{\prime}-\mathrm{C}\right), 121.25(\mathrm{C}), 142.87(\mathrm{CH}), 151.33(\mathrm{C}), 151.81$ (CH) and $160.60(\mathrm{C}) ; \delta_{\mathrm{P}}\left(162.0 \mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{OD}\right) 17.12 ; \mathrm{m} / \mathrm{z} 384$ $\left(\mathrm{M}^{+}, 1 \%\right), 369\left[\left(\mathrm{M}-\mathrm{CH}_{3}\right)^{+}, 2\right], 262(77), 165\left[(\mathrm{BH}+\mathrm{H})^{+}, 100\right]$ and 137 (33) [Found (EI): $\mathrm{M}^{+}, 384.1195 ; \mathrm{C}_{15} \mathrm{H}_{21} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{P}$ requires $M, 384.1199]$.

Further elution yielded the slower running diastereomer as a glass ($14 \mathrm{mg}, 19 \%$); $v_{\max }$ (film) 3340 br w ($\mathrm{O}-\mathrm{H}$ str.), 2983 w ($\mathrm{C}-\mathrm{H}$ str.), 1597s (conj. cyclic $\mathrm{C}=\mathrm{N}$), 1577m (conj. cyclic $\mathrm{C}=\mathrm{N}$), $1459 \mathrm{~m}, 1342 \mathrm{~m}$ ($\mathrm{O}-\mathrm{H}$ bend), $1318 \mathrm{~m}, 1228 \mathrm{~m}(\mathrm{P}=\mathrm{O}), 1120 \mathrm{~m} \mathrm{~s}$ (C-O str.) and $1029 \mathrm{~m} \mathrm{~s}(\mathrm{P}-\mathrm{O}-\mathrm{alkyl}) ; \delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{OD}\right)$ $1.48\left(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}\right), 1.49\left(3 \mathrm{H}, \mathrm{t}, J 7, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}\right), 2.23$ $\left(1 \mathrm{H}\right.$, ddd, $J 12.5,11.5$ and $\left.9,5^{\prime}-\mathrm{H}^{\beta}\right), 2.59(1 \mathrm{H}$, ddd, $J 12.5,9$ and 7, 5- H^{α}), $3.99(1 \mathrm{H}, \mathrm{d}, J 15, \mathrm{PCHO}), 4.24(1 \mathrm{H}$, ddd, $J 11.5$, 10 and $7,4^{\prime}-\mathrm{H}$), $4.30\left(3 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OP}\right.$ and PCHO), 4.37 (1 H , dd, $J 6$ and 1, $\left.2^{\prime}-\mathrm{H}\right)$, $4.66\left(2 \mathrm{H}, \mathrm{q}, J 7, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OAr}\right), 4.88$ (1 $\left.\mathrm{H}, \mathrm{td}, J 9,1,1^{\prime}-\mathrm{H}\right), 5.33\left(1 \mathrm{H}, \mathrm{ddd},{ }^{3} J_{\mathrm{HH}} 10,6,{ }^{3} J_{\mathrm{HP}} 1.5,3^{\prime}-\mathrm{H}\right)$, $8.31(1 \mathrm{H}, \mathrm{s}, 2-$ or $8-\mathrm{H})$ and $8.50(1 \mathrm{H}, \mathrm{s}, 8-$ or $2-\mathrm{H}) ; \delta_{\mathrm{C}}(100.6$ $\left.\mathrm{MHz} ; \mathrm{CD}_{3} \mathrm{OD}\right) 13.35\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OAr}\right)$, $15.37\left(\mathrm{CH}_{3}, \mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{CP}} 6\right.$, $\left.\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OP}\right), 29.53\left(\mathrm{CH}_{2}, 5^{\prime}-\mathrm{C}\right), 60.90\left(\mathrm{CH}, 1^{\prime}-\mathrm{C}\right), 61.91\left(\mathrm{CH}_{2}\right.$, d, $\left.{ }^{1} J_{\mathrm{CP}} 143, \mathrm{PCH}_{2} \mathrm{O}\right), 62.22\left(\mathrm{CH}_{2}, \mathrm{~d},{ }^{2} J_{\mathrm{CP}} 7, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OP}\right), 62.92$ $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OAr}\right), 72.12\left(\mathrm{CH}, \mathrm{d},{ }^{3} J_{\mathrm{CP}} 5.5,2^{\prime}-\mathrm{C}\right), 77.15\left(\mathrm{CH}, \mathrm{d},{ }^{3} J_{\mathrm{CP}}\right.$ $\left.6,4^{\prime}-\mathrm{C}\right), 83.11\left(\mathrm{CH}, \mathrm{d},{ }^{2} J_{\mathrm{CP}} 7,3^{\prime}-\mathrm{C}\right), 121.34$ (C), $142.99(\mathrm{CH})$, $151.32(\mathrm{C}), 151.74(\mathrm{CH})$ and $160.64(\mathrm{C}) ; \delta_{\mathrm{P}}(162.0 \mathrm{MHz}$; $\left.\mathrm{CD}_{3} \mathrm{OD}\right) 16.53 ; \mathrm{m} / \mathrm{z} 384\left(\mathrm{M}^{+}, 12 \%\right), 262$ (30), 191 (47), 178 (35), $165\left[(\mathrm{BH}+\mathrm{H})^{+}, 100\right]$ and $137(46)$ [Found (EI): $\left.\mathrm{M}^{+}, 384.1181\right]$.

$3^{\prime}, 4^{\prime}$-Cyclic ester of $9-\left[\left(1^{\prime} \beta, 2^{\prime} \alpha, 3^{\prime} \alpha, 4^{\prime} b\right)-2^{\prime}, 3^{\prime}\right.$-dihydroxy-4'(dihydroxyphosphorylmethoxy)cyclopentyl]inosine 19

TMSBr ($540 \mathrm{~mm}^{3}, 626 \mathrm{mg}, 4.09 \mathrm{mmol}$) was added dropwise to a cooled solution $\left(0^{\circ} \mathrm{C}\right)$ of the cyclic compound $\mathbf{1 8}(27 \mathrm{mg}, 0.070$ mmol) in anhydrous DMF ($2 \mathrm{~cm}^{3}$). The reaction mixture was allowed to warm to room temp. and was stirred for 48 h . After cooling to $0{ }^{\circ} \mathrm{C}$, water $\left(1 \mathrm{~cm}^{3}\right)$ was added and the mixture was again allowed to warm to room temp., and was stirred for a further 1 h . The solution was then neutralised to pH 7 with 2 m sodium hydroxide and the aqueous phase was washed with diethyl ether $\left(2 \times 5 \mathrm{~cm}^{3}\right)$. The solvents were removed in vacuo and the resultant solid was purified by chromatography using a reversed-phase column, eluent water- $\mathrm{CH}_{3} \mathrm{CN}(95: 5)$ to yield the title compound 19 as a glass ($20 \mathrm{mg}, 87 \%$); $\lambda_{\max }\left(\mathrm{H}_{2} \mathrm{O}\right) 250$ $\left(\varepsilon / 1000 \mathrm{~cm}^{3} / \mathrm{mol}^{-1} \mathrm{~cm}^{-1} 9660\right) ; v_{\text {max }}(\mathrm{KBr}$ disc) $3422 \mathrm{br} \mathrm{m}(\mathrm{O}-\mathrm{H}$ str.), 1683s [(C=O)NH and conj. cyclic $\mathrm{C}=\mathrm{N}], 1214 \mathrm{~m} \mathrm{~s}(\mathrm{P}=\mathrm{O})$ and 1078 m (C-O str. and P-O-alkyl); $\delta_{\mathrm{H}}\left(400 \mathrm{MHz} ; \mathrm{D}_{2} \mathrm{O}\right) 2.10$ $\left(1 \mathrm{H}, \mathrm{ddd}, J 12.5,11\right.$ and $\left.9,5^{\prime}-\mathrm{H}^{\beta}\right), 2.64(1 \mathrm{H}$, ddd, $J 12.5,9$ and $\left.6.5,5^{\prime}-\mathrm{H}^{\alpha}\right), 3.78(1 \mathrm{H}, \mathrm{dd}, J 14$ and $2, \mathrm{PCHO}), 4.00(1 \mathrm{H}, \mathrm{dd}, J$ 14 and 9.5, PCHO), $4.11\left(1 \mathrm{H}\right.$, ddd, $J 11,10$ and $\left.6.5,4^{\prime}-\mathrm{H}\right), 4.35$ $\left(1 \mathrm{H}, \mathrm{dd}, J 6.5\right.$ and $\left.1.5,2^{\prime}-\mathrm{H}\right), 4.85\left(1 \mathrm{H}, \mathrm{td}, J 9\right.$ and $\left.1.5,1^{\prime}-\mathrm{H}\right)$, $4.86\left(1 \mathrm{H}\right.$, ddd, ${ }^{3} J_{\mathrm{HH}} 10$ and $\left.6.5,{ }^{3} J_{\mathrm{HP}} 2.5,3^{\prime}-\mathrm{H}\right), 8.13(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, 2 - or $8-\mathrm{H})$ and $8.15(1 \mathrm{H}, \mathrm{s}, 8-$ or $2-\mathrm{H}) ; \delta_{\mathrm{C}}\left(100.6 \mathrm{MHz} ; \mathrm{D}_{2} \mathrm{O}\right)$ $29.95\left(\mathrm{CH}_{2}, 5^{\prime}-\mathrm{C}\right), 59.80\left(\mathrm{CH}, 1^{\prime}-\mathrm{C}\right), 64.96\left(\mathrm{CH}_{2}, \mathrm{~d},{ }^{1} J_{\mathrm{CP}} 141\right.$, $\left.\mathrm{PCH}_{2} \mathrm{O}\right), 72.68\left(\mathrm{CH}, \mathrm{d},{ }^{3} J_{\mathrm{CP}} 6,2^{\prime}-\mathrm{C}\right), 77.44\left(\mathrm{CH}, \mathrm{d},{ }^{3} J_{\mathrm{CP}} 5,4^{\prime}-\right.$ C), $80.50\left(\mathrm{CH}, \mathrm{d},{ }^{2} J_{\mathrm{CP}} 5,3^{\prime}-\mathrm{C}\right), 140.88(\mathrm{CH}), 145.94(\mathrm{CH})$, $148.85(\mathrm{C})$ and $159.14(\mathrm{C}) ; \delta_{\mathrm{P}}\left(162.0 \mathrm{MHz} ; \mathrm{D}_{2} \mathrm{O}\right) 12.52 ; \mathrm{m} / \mathrm{z} 327$ $\left[(\mathrm{M}-\mathrm{H})^{+}, 23 \%\right], 205\left\{\left[(\mathrm{glyc})_{2}+\mathrm{Na}-2 \mathrm{H}\right]^{+}, 44\right\}$ and 113 $\left[(\mathrm{glyc}+\mathrm{Na}-2 \mathrm{H})^{+}, 100\right]$ [Found (FAB): $(\mathrm{M}-\mathrm{H})^{+}, 327.0487$. $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{P}$ requires $\left.m / z, 327.0494\right]$.

Acknowledgements

We thank the EPSRC and Chiroscience for a CASE award (to J. M. L. H.).

References

1 G. H. Jones, H. P. Albrecht, N. P. Damodaran and J. G. Moffatt, J. Am. Chem. Soc., 1970, 92, 5510; N. Yamaji, Y. Yuasa and M. Kato, Chem. Pharm. Bull., 1976, 24, 1561; N. Yamaji, K. Suda, Y. Onoue and M. Kato, Chem. Pharm. Bull., 1977, 25, 3239; N. Yamaji, K. Tahara and M. Kato, Chem. Pharm. Bull., 1978, 26, 2391; 1980, 28, 115; F. Eckstein and U. Kutzke, Tetrahedron Lett., 1986, 27, 1657; J. Baraniak and W. J. Stec, J. Chem. Soc., Perkin Trans. 1, 1987, 1645; J. D. Anderson, R. K. Robins and G. R. Revankar, Nucleosides, Nucleotides, 1987, 6, 853; H.-G. Genieser, W. Dostmann, U. Bottin, E. Butt and B. Jastorff, Tetrahedron Lett., 1988, 29, 2803; H.-G. Genieser, E. Butt, U. Bottin, W. Dostmann and B. Jastorff, Synthesis, 1989, 53; S. Kataoka, R. Uchida and N. Yamaji, Heterocycles, 1991, 32, 1351.

2 R. J. W. De Wit, D. Hekstra, B. Jastorff, W. J. Stec, J. Baraniak, R. Van DrieL and P. J. M. Van Haastert, Eur. J. Biochem., 1984, 142 255.

3 I. T. Weber, T. A. Steitz, J. Bubis and S. S. Taylor, Biochemistry, 1987, 26, 343; W. R. G. Dostmann, S. S. Taylor, H.-G. Genieser, B. Jastorff, S. O. Døskeland and D. Øgreid, J. Biol. Chem., 1990, 265, 10484.
4 H.-G. Genieser, E. Winkler, E. Butt, M. Zorn, S. Schulz, F. Iwitzki, R. Störmann, B. Jastorff, S. O. Døskeland, D. Øgreid, S. Ruchaud and M. Lanotte, Carbohydr. Res., 1992, 234, 217.
5 T. S. Yagura, Z. Kazimierczuk, D. Shugar and J. P. Miller, Biochem. Biophys. Res. Commun., 1980, 97, 737; G. H. Jones and J. G. Moffatt, U.S. Pat. appl. 3446793 (Chem. Abstr., 1969, 71, 70 903m); P. J. M. Van Haastert, R. Van Driel, B. Jastorff, J. Baraniak, W. J. Stec and R. J. W. De Wit, J. Biol. Chem., 1984, 259, 10 020; G. H. Jones, D. V. K. Murthy, D. Tegg, R. Golling and J. G. Moffatt, Biochem. Biophys. Res. Commun., 1973, 53, 1338.

6 G. H. Jones, R. S. Ranganathan and J. G. Moffatt, U.S. Pat. appl. 3872098 (Chem. Abstr., 1975, 83, 10 730r); G. H. Jones and J. G. Moffatt, U.S. Pat. appl. 3558595 (Chem. Abstr., 1971, 74, 112 406w); J. D. Rothermel, W. J. Stec, J. Baraniak, B. Jastorff and L. H. Parker Botelho, J. Biol. Chem., 1983, 258, 12125.

7 R. K. Robins, Nucleosides, Nucleotides, 1982, 1, 205; M. Saito, S. Kataoka, A. Nasu, N. Yamaji and A. Ichikawa, Chem. Pharm. Bull., 1991, 39, 3207; G. S. Johnson, R. M. Friedman and I. Pastan, Proc. Natl. Acad. Sci. USA, 1971, 68, 425.
8 S. Kataoka, J. Isono, N. Yamaji, M. Kato, T. Kawada and S. Imai, Chem. Pharm. Bull., 1988, 36, 2212; S. Kataoka, J. Imai, N. Yamaji, M. Kato, T. Kawada and S. Imai, Chem. Pharm. Bull., 1990, 38,

1596; S. Kataoka, N. Yamaji, M. Kato, T. Kawada and S. Imai, Chem. Pharm. Bull., 1990, 38, 3147.
9 J. Béres, G. Sági, W. G. Bentrude, J. Balzarini, E. De Clercq and L. Ötvös, J. Med. Chem., 1986, 29, 1243; X. Li and R. Cosstick, J. Chem. Soc., Perkin Trans. 1, 1993, 1091; V. Hagen, C. Dzeja, S. Frings, J. Bendig, E. Krause and U. B. Kaupp, Biochemistry, 1996, 35, 7762.
10 A. F. Drake, A. Garofalo, J. M. L. Hillman, V. Merlo, R. McCague and S. M. Roberts, J. Chem. Soc., Perkin Trans. 1, 1996, 2739.
11 J. Coste, D. Le-Nguyen and B. Castro, Tetrahedron Lett., 1990, 31, 205; J.-M. Campagne, J. Coste and P. Jouin, Tetrahedron Lett., 1993, 34, 6743; J. Org. Chem., 1995, 60, 5214.
12 D. A. Campbell, J. Org. Chem., 1992, 57, 6331; C. E. McKenna and J. Schmidhauser, J. Chem. Soc., Chem. Commun., 1979, 739.

13 V. Merlo, F. J. Reece, S. M. Roberts, M. Gregson and R. Storer, J. Chem. Soc., Perkin Trans. 1, 1993, 1717.

14 W. Zhang and M. J. Robins, Tetrahedron Lett., 1992, 33, 1177.
15 A. Holy and I. Rosenberg, Collect. Czech. Chem. Commun., 1982, 47, 3447.
16 D. P. Phillion and S. S. Andrew, Tetrahedron Lett., 1986, 27, 1477.
17 N. B. Dyatkina, F. Theil and M. von Janta-Lipinski, Tetrahedron, 1995, 51, 761.
18 W. A. Szarek, A. Zamojski, K. N. Tiwari and E. R. Ison, Tetrahedron Lett., 1986, 27, 3827.

Paper 7/04961G
Received 10th July 1997
Accepted 12th August 1997

